Mathematical Biosciences and Engineering, 2013, 10(3): 649-665. doi: 10.3934/mbe.2013.10.649.

Primary: 58F15, 58F17; Secondary: 53C35.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms

1. Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat and CEMAT, P-1049-001, Lisbon
2. Univ Tecn Lisboa, ISEG, Dept Matemat and CEMAPRE, P-1200-781 Lisbon

Two different generalized Newtonian mathematical models for blood flow, derived for the same experimental data, are compared, together with the Newtonian model, in three different anatomically realistic geometries of saccular cerebral aneurysms obtained from rotational CTA. The geometries differ in size of the aneurysm and the existence or not of side branches within the aneurysm.Results show that the differences between the two generalized Newtonian mathematical models are smaller than the differences between these and the Newtonian solution, in both steady and unsteady simulations.
  Figure/Table
  Supplementary
  Article Metrics

Keywords patient-specific geometry; cerebral aneurysm; Blood flow modeling; non-Newtonian blood models.

Citation: Alberto Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira. Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms. Mathematical Biosciences and Engineering, 2013, 10(3): 649-665. doi: 10.3934/mbe.2013.10.649

References

  • 1. Journal of The Royal Society Interface, 7 (2010), 967-988.
  • 2. Springer-Verlag, 1973.
  • 3. Neurosurgery, 37 (1995), 774-784.
  • 4. Oxford University Press, 1978.
  • 5. IEEE Transactions on Medical Imaging, 24 (2005), 457-467.
  • 6. AJNR Am. J. Neuroradiol, 32 (2011), 27-33.
  • 7. AJNR Am. J. Neuroradiol, 32 (2011), 145-152.
  • 8. Journal of Biomechanics, 41 (2008), 241-248.
  • 9. Mathematical Biosciences and Engineering, 8 (2011), 409-423.
  • 10. Int. J. Numer. Meth. Biomed. Engng., 26 (2010), 926-953.
  • 11. Int. J. Numer. Meth. Fluids, 57 (2008), 495-517.
  • 12. Journal of Neurosurgery, 103 (2005), 662-680.
  • 13. American Journal of Neuroradiology, 22 (2001), 721-724.
  • 14. in "Advances in Mathematical Fluid Mechanics", Springer, Berlin and Heidelberg, (2010), 295-310.
  • 15. Annals of Biomedical Engineering, 36 (2008), 726-741.
  • 16. Acta Neurochirurgica, 143 (2001), 429-449.
  • 17. J. Biomech. Eng., 129 (2007), 273-278.
  • 18. CRC Press, Boca Raton, FL, 1988.
  • 19. Stroke, 38 (2007), 1924-1931.
  • 20. Cardiovascular Engineering and Technology, 3 (2012), 22-40.
  • 21. Math. Comput. Modelling, 25 (1997), 57-70.
  • 22. International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 697-713.
  • 23. in "Mathematical Methods and Models in Biomedicine" (Eds. U. Ledzewicz, H. Schättler, A. Friedman and E. Kashdan), Springer, (2013), 149-175.
  • 24. Ann. Biomed. Eng., 36 (2008), 1793-1804.
  • 25. in "Hemodynamical Flows", Modeling, Analysis and Simulation, Oberwolfach Seminars, 37 (2008), 63-120, Birkhäuser.
  • 26. Stroke, 36 (2005), 193338.
  • 27. American Journal of Neuroradiology, 24 (2003), 55966.
  • 28. Journal of Neurosurgery, 106 (2007), 1051-1060.
  • 29. Mech. Res. Commun., 25 (1998), 257-262.
  • 30. Journal of Biomechanical Engineering, 132 (2010), 091009.

 

This article has been cited by

  • 1. T. Bodnár, M. Pires, J. Janela, A. Sequeira, V. Volpert, Blood Flow Simulation Using Traceless Variant of Johnson-Segalman Viscoelastic Model, Mathematical Modelling of Natural Phenomena, 2014, 9, 6, 117, 10.1051/mmnp/20149609
  • 2. J. Tiago, A. Gambaruto, A. Sequeira, A. Sequeira, V. Volpert, Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data, Mathematical Modelling of Natural Phenomena, 2014, 9, 6, 98, 10.1051/mmnp/20149608
  • 3. Adélia Sequeira, , Non-Newtonian Fluid Mechanics and Complex Flows, 2018, Chapter 1, 1, 10.1007/978-3-319-74796-5_1
  • 4. D Liepsch, S Sindeev, S Frolov, An impact of non-Newtonian blood viscosity on hemodynamics in a patient-specific model of a cerebral aneurysm, Journal of Physics: Conference Series, 2018, 1084, 012001, 10.1088/1742-6596/1084/1/012001
  • 5. Simon Wolfgang Funke, Magne Nordaas, Øyvind Evju, Martin Sandve Alnaes, Kent Andre Mardal, Variational data assimilation for transient blood flow simulations: Cerebral aneurysms as an illustrative example, International Journal for Numerical Methods in Biomedical Engineering, 2018, e3152, 10.1002/cnm.3152
  • 6. Vahid Goodarzi Ardakani, Xin Tu, Alberto M. Gambaruto, Iolanda Velho, Jorge Tiago, Adélia Sequeira, Ricardo Pereira, Near-Wall Flow in Cerebral Aneurysms, Fluids, 2019, 4, 2, 89, 10.3390/fluids4020089

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved