Mathematical Biosciences and Engineering, 2013, 10(3): 579-590. doi: 10.3934/mbe.2013.10.579.

68T10, 65F15, 92B99, 92C20, 00A69.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Identifying preseizure state in intracranial EEG data using diffusion kernels

1. 101 AKW, 51 Prospect St. New Haven, CT 06511
2. 103 AKW, 51 Prospect St. New Haven, CT 06511
3. 716 LLCI, 15 York St. New Haven, CT 06520
4. 108A AKW, 51 Prospect St. New Haven, CT 06511

The goal of this study is to identify preseizure changes in intracranial EEG (icEEG). A novel approach based on the recently developed diffusion map framework, which is considered to be one of the leading manifold learning methods, is proposed. Diffusion mapping provides dimensionality reduction of the data as well as pattern recognition that can be used to distinguish different states of the patient, for example, interictal and preseizure. A new algorithm, which is an extension of diffusion maps, is developed to construct coordinates that generate efficient geometric representations of the complex structures in the icEEG data. In addition, this method is adapted to the icEEG data and enables the extraction of the underlying brain activity.
   The algorithm is tested on icEEG data recorded from several electrode contacts from a patient being evaluated for possible epilepsy surgery at the Yale-New Haven Hospital. Numerical results show that the proposed approach provides a distinction between interictal and preseizure states.
  Figure/Table
  Supplementary
  Article Metrics

Keywords epilepsy; diffusion maps; Intracranial EEG; seizure prediction; nonlinear independent component analysis

Citation: Dominique Duncan, Ronen Talmon, Hitten P. Zaveri, Ronald R. Coifman. Identifying preseizure state in intracranial EEG data using diffusion kernels. Mathematical Biosciences and Engineering, 2013, 10(3): 579-590. doi: 10.3934/mbe.2013.10.579

References

  • 1. Phys. Rev. E, 67 (2003), 10901.
  • 2. NeuroImage, 52 (2010), 1162-1170.
  • 3. Appl. Comp. Harm. Anal., 21 (2006), 5-30.
  • 4. Challenges of Modern Technology, 1 (2010), 27-29.
  • 5. Epilepsy and Behavior, 19 (2010), 4-16.
  • 6. Epilepsia, 50 (2009), 2575-85.
  • 7. Mayo. Clin. Proc., 71 (1996), 576-586.
  • 8. Appl. Comp. Harm. Anal., 32 (2012), 280-294.
  • 9. N. Engl. J. Med., 342 (2000), 314-319.
  • 10. Brain, 130 (2007), 314-333.
  • 11. in "Medical Image Computing and Computer-Assisted Intervention" (Eds. C. Barillot, D. Haynor and P. Hellier) Saint-Malo: Springer, (2004), 763-770.
  • 12. IEEE Trans. Signal Process, ASSP-28, 55-69.
  • 13. Elsevier, 22 (2011), S88-S93.
  • 14. Appl. Comp. Harm. Anal., 25 (2008), 226-239.
  • 15. Neurology Today, 9 (2009), 22-23.
  • 16. submitted to PNAS, (2012).
  • 17. IEEE Trans. Signal Process, 60 (2012).

 

This article has been cited by

  • 1. Wenzhao Lian, Ronen Talmon, Hitten Zaveri, Lawrence Carin, Ronald Coifman, Multivariate time-series analysis and diffusion maps, Signal Processing, 2015, 116, 13, 10.1016/j.sigpro.2015.04.003
  • 2. Dominique Duncan, Thomas Strohmer, Classification of Alzheimer's disease using unsupervised diffusion component analysis, Mathematical Biosciences and Engineering, 2016, 13, 6, 1119, 10.3934/mbe.2016033
  • 3. Dominique Duncan, Paul Vespa, Arthur W. Toga, Detecting features of epileptogenesis in EEG after TBI using unsupervised diffusion component analysis, Discrete and Continuous Dynamical Systems - Series B, 2017, 23, 1, 161, 10.3934/dcdsb.2018010
  • 4. Ronen Talmon, Stephane Mallat, Hitten Zaveri, Ronald R. Coifman, Manifold Learning for Latent Variable Inference in Dynamical Systems, IEEE Transactions on Signal Processing, 2015, 63, 15, 3843, 10.1109/TSP.2015.2432731
  • 5. Hau-tieng Wu, Ronen Talmon, Yu-Lun Lo, Assess Sleep Stage by Modern Signal Processing Techniques, IEEE Transactions on Biomedical Engineering, 2015, 62, 4, 1159, 10.1109/TBME.2014.2375292
  • 6. N. Rabin, D. Fishelov, Multi-scale kernels for Nyström based extension schemes, Applied Mathematics and Computation, 2018, 319, 165, 10.1016/j.amc.2017.02.025
  • 7. Constantinos Siettos, Jens Starke, Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 5, 438, 10.1002/wsbm.1348
  • 8. Dominique Duncan, Paul Vespa, Asla Pitkänen, Adebayo Braimah, Niina Lapinlampi, Arthur W. Toga, Big data sharing and analysis to advance research in post-traumatic epilepsy, Neurobiology of Disease, 2018, 10.1016/j.nbd.2018.05.026
  • 9. Dominique Duncan, Giuseppe Barisano, Ryan Cabeen, Farshid Sepehrband, Rachael Garner, Adebayo Braimah, Paul Vespa, Asla Pitkänen, Meng Law, Arthur W. Toga, Analytic Tools for Post-traumatic Epileptogenesis Biomarker Search in Multimodal Dataset of an Animal Model and Human Patients, Frontiers in Neuroinformatics, 2018, 12, 10.3389/fninf.2018.00086
  • 10. Maria A. Veretennikova, Alla Sikorskii, Michael J. Boivin, Parameters of stochastic models for electroencephalogram data as biomarkers for child’s neurodevelopment after cerebral malaria, Journal of Statistical Distributions and Applications, 2018, 5, 1, 10.1186/s40488-018-0086-7
  • 11. Ariel Schwartz, Ronen Talmon, Intrinsic Isometric Manifold Learning with Application to Localization, SIAM Journal on Imaging Sciences, 2019, 12, 3, 1347, 10.1137/18M1198752

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved