Mathematical Biosciences and Engineering, 2013, 10(3): 565-578. doi: 10.3934/mbe.2013.10.565.

Primary: 92C37, 35B35; Secondary: 35B40.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Mathematical modeling of glioma therapy using oncolytic viruses

1. Laboratoire Interdisciplinaire des Environnements Continentaux, Université de Lorraine, CNRS UMR 7360, 8 rue du Général Delestraint, 57070 METZ
2. Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, UMR 6085 CNRS, Avenue de l'Université, 76801 Saint Etienne du Rouvray
3. Department of Mathematics, Elmhurst College, 190 Prospect Avenue, Elmhurst, IL 60126

Diffuse infiltrative gliomas are adjudged to be the most common primary brain tumors in adults and theytend to blend in extensively in the brain micro-environment. This makes it difficult for medicalpractitioners to successfully plan effective treatments. In attempts to prolong the lengths of survivaltimes for patients with malignant brain tumors, novel therapeutic alternatives such as gene therapy withoncolytic viruses are currently being explored. Based on such approaches and existing work, a spatio-temporal model that describes interaction between tumor cells and oncolytic viruses is developed.Conditions that lead to optimal therapy in minimizing cancer cell proliferation and otherwise areanalytically demonstrated. Numerical simulations are conducted with the aim of showing the impact ofvirotherapy on proliferation or invasion of cancer cells and of estimating survival times.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Cancer gene therapy; mathematical model.; oncolytic viruses

Citation: Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences and Engineering, 2013, 10(3): 565-578. doi: 10.3934/mbe.2013.10.565

References

  • 1. in "The Pathology of the Aging Human Nervous System" (ed. S. Duckett), Lea and Fabiger, Philadelphia, (1991), 210-286.
  • 2. Virology, 156 (1987), 107-121.
  • 3. PLoS Comput. Biol., 7 (2011), e1001085.
  • 4. AJNR Am. J. Neuroradiol, 16 (1995), 1001-1012.
  • 5. J. Neurosurg, 68 (1988), 698-704.
  • 6. Abstract and Applied Analysis, (ID 590326), (2012), 1-13.
  • 7. Cell Cycle, 5 (2006), 2244-2252.
  • 8. Acta Neuropathol, 114 (2007), 443-458.
  • 9. Am. J. Roentgenol. Radium Ther. Nucl. Med., 84 (1960), 99-107.
  • 10. J. Neurooncol, 67 (2004), 83-93.
  • 11. Am. J. Respir. Cell Mol. Biol., 32 (2005), 498-503.
  • 12. Phys. Lett. A, 277 (2000), 212-218.
  • 13. J. Math. Biol., 47 (2003), 391-423.
  • 14. American Control Conference, (2009), 2904-2909.
  • 15. J. Neuropathol. Exp. Neurol., 66 (2007), 1-9.
  • 16. Hum. Gene. Ther., 12 (2001), 1323-1332.
  • 17. J. Neurosurg., 66 (1987), 865-874.
  • 18. Curr. Opin. Mol. Ther., 5 (2003), 618-624.
  • 19. Clin. Cancer Res., 9 (2003), 693-702.
  • 20. Ann. Neurol., 53 (2003), 524-528.
  • 21. 3rd edition, Springer-Verlag, New York, 2003.
  • 22. Biology Direct, 1 (2006), 1-18.
  • 23. Neurol. Res., 28 (2006), 518-522.
  • 24. Ann. Neurol., 60 (2006), 380-383.
  • 25. Brain Pathol., 9 (1999), 241-245.
  • 26. Phys. Med. Biol., 55 (2010), 3271-3285.
  • 27. Neurosurgery, 36 (1995), 275-282.
  • 28. J. Neurosurg., 86 (1997), 525-531.
  • 29. J. Neurolog. Sci., 216 (2003), 1-10.
  • 30. Br. J. Cancer, 98 (2008), 113-119.
  • 31. Microbiol. Immunol., 45 (2001), 709-715.
  • 32. Science in China Series A: Mathematics, 51 (2008), 2315-2329.
  • 33. J. Math. Analysis and Applications, 254 (2001), 138-153.
  • 34. World Scientific Publishing Company, Singapore, 2005.
  • 35. Cancer Res., 61 (2001), 3501-3507.
  • 36. PLoS ONE, 4 (2009), e4271.
  • 37. Bull. Math. Biol., 63 (2001), 731-768.
  • 38. Bull. Math. Biol., 66 (2004), 605-625.
  • 39. J. Theor. Biol., 245 (2007), 1-8.

 

This article has been cited by

  • 1. Urszula Ledzewicz, Behrooz Amini, Heinz Schättler, Dynamics and control of a mathematical model for metronomic chemotherapy, Mathematical Biosciences and Engineering, 2015, 12, 6, 1257, 10.3934/mbe.2015.12.1257
  • 2. Dominik Wodarz, Computational modeling approaches to the dynamics of oncolytic viruses, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 3, 242, 10.1002/wsbm.1332
  • 3. Subhas Khajanchi, Sandip Banerjee, Influence of multiple delays in brain tumor and immune system interaction with T11 target structure as a potent stimulator, Mathematical Biosciences, 2018, 10.1016/j.mbs.2018.06.001
  • 4. A. Diouf, H. Mokrani, D. Ngom, M. Haque, B.I. Camara, Detection and computation of high codimension bifurcations in diffuse predator–prey systems, Physica A: Statistical Mechanics and its Applications, 2018, 10.1016/j.physa.2018.10.027
  • 5. Talal Alzahrani, Raluca Eftimie, Dumitru Trucu, Multiscale Modelling of Cancer Response to Oncolytic Viral Therapy, Mathematical Biosciences, 2019, 10.1016/j.mbs.2018.12.018
  • 6. Johannes P. W. Heidbuechel, Daniel Abate-Daga, Christine E. Engeland, Heiko Enderling, , Oncolytic Viruses, 2020, Chapter 21, 307, 10.1007/978-1-4939-9794-7_21

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved