Mathematical Biosciences and Engineering, 2013, 10(3): 523-550. doi: 10.3934/mbe.2013.10.523.

Primary: 58F15, 58F17; Secondary: 53C35.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Diffusion rate determines balance between extinction and proliferationin birth-death processes

1. Department of Mathematics, Bar Ilan University, Ramat Gan

We here study spatially extended catalyst induced growth processes.This type of process exists in multiple domains of biology, rangingfrom ecology (nutrients and growth), through immunology (antigensand lymphocytes) to molecular biology (signaling molecules initiatingsignaling cascades). Such systems often exhibit an extinction-proliferationtransition, where varying some parameters can lead to either extinctionor survival of the reactants.
   When the stochasticity of the reactions, the presence of discretereactants and their spatial distribution is incorporated into theanalysis, a non-uniform reactant distribution emerges, even when allparameters are uniform in space.
   Using a combination of Monte Carlo simulation and percolation theorybased estimations; the asymptotic behavior of such systems is studied.In all studied cases, it turns out that the overall survival of thereactant population in the long run is based on the size and shapeof the reactant aggregates, their distribution in space and the reactantdiffusion rate. We here show that for a large class of models, thereactant density is maximal at intermediate diffusion rates and lowor zero at either very high or very low diffusion rates. We give multipleexamples of such system and provide a generic explanation for thisbehavior. The set of models presented here provides a new insighton the population dynamics in chemical, biological and ecologicalsystems.
  Figure/Table
  Supplementary
  Article Metrics

Keywords localization.; AB model; logistic growth; directed percolation; adaption

Citation: Hilla Behar, Alexandra Agranovich, Yoram Louzoun. Diffusion rate determines balance between extinction and proliferationin birth-death processes. Mathematical Biosciences and Engineering, 2013, 10(3): 523-550. doi: 10.3934/mbe.2013.10.523

References

  • 1. Saunders, Philadelphia, (2003), 243-274.
  • 2. Physical Review E, 85 (2012), p. 031911.
  • 3. Journal of Theoretical Biology, 241 (2006), 307-320.
  • 4. Physical Review, 109 (1958), p. 1492.
  • 5. Journal of Theoretical Biology, 139 (1989), 311-326.
  • 6. John Wiley & Sons, 2008.
  • 7. The Journal of Experimental Medicine, 183 (1996), 2259-2269.
  • 8. Physical Review E, 86 (2012), p. 031146.
  • 9. Ecology, (1992), 1530-1535.
  • 10. Theoretical Population Biology, 65 (2004), 299-315.
  • 11. in "Proceedings of the Cambridge Philosophical Society," 53 1957, 629-641.
  • 12. Immunology Letters, 65 (1999), 93-98.
  • 13. Ecological Complexity, 4 (2007), 242-249.
  • 14. Theoretical Population Biology, 53 (1998), 108-130.
  • 15. Journal of Mathematical Biology, 34 (1996), 579-612.
  • 16. Journal of Theoretical Biology, 176 (1995), 91-102.
  • 17. Physical Review Letters, 101 (2008), p. 258102.
  • 18. Journal of Theoretical Biology, 227 (2004), 535-545.
  • 19. Journal of Differential Equations, 203 (2004), 331-364.
  • 20. Annals of Human Genetics, 7 (1937), 355-369.
  • 21. Applicable Analysis, 31 (1989), 247-266.
  • 22. Bulletin of Mathematical Biology, 48 (1986), 493-508.
  • 23. 2002.
  • 24. Science, 79 (1934), p. 340.
  • 25. Zeitschrift fur Physik B Condensed Matter, 47 (1982), 365-374.
  • 26. Journal of Physics A: Mathematical and General, 22 (1989), 3673-3679.
  • 27. Physical Review E, 55 (1997), p. 2488.
  • 28. Journal of Physics A: Mathematical and General, 17 (1999), p. L105.
  • 29. Journal of Mathematical Biology, 5 (1977), 399-403.
  • 30. Physica A: Statistical Mechanics and its Applications, 289 (2001), 178-190.
  • 31. Advances In Physics, 49 (2000), 815-958.
  • 32. Ecology Letters, 8 (2004), 102-116.
  • 33. Garland Publ., Inc., New York, NY, 1997.
  • 34. Zeitschrift für Physik B Condensed Matter, 42 (1981), 151-154.
  • 35. Physica A: Statistical Mechanics and its Applications, 203 (1994), 175-188.
  • 36. Nonlinear Analysis: Theory, Methods & Applications, 28 (1997), 145-164.
  • 37. International Journal of Modern Physics C, 17 (2006), 1647-1662.
  • 38. Open ISBN, (2007).
  • 39. Bulletin of Mathematical Biology, 53 (1991), 33-55.
  • 40. Electron. J. Probab., 8 (2003), 1-51.
  • 41. Mosc. Univ. Bull. Math, 1 (1937), 1-25.
  • 42. Cambridge University Press, 2001.
  • 43. Ecology, 90 (2009), 802-811.
  • 44. Biometrika, (1960), 219-234.
  • 45. Biophysical Journal, 87 (2004), 75-80.
  • 46. Journal of the American Chemical Society, 42 (1920), 1595-1599.
  • 47. Proceedings of the National Academy of Sciences of the United States of America, 8 (1922), p. 147.
  • 48. Williams & Wilkins Baltimore, 1925.
  • 49. Physica A, 297 (2001), 242-252.
  • 50. preprint, arXiv:nlin/0006043, (2000).
  • 51. Physica A: Statistical Mechanics and its Applications, 297 (2001), 242-252.
  • 52. Bulletin of Mathematical Biology, 65 (2003), 375-396.
  • 53. Artificial Life, 9 (2003), 357-370.
  • 54. New York: Penguin, (1798).
  • 55. Physical Review E, 73 (2006), p. 040903.
  • 56. Stochastic models in biological sciences, 253-257, Banach Center Publ., 80, Polish Acad. Sci. Inst. Math., Warsaw, 2008.
  • 57. 1989.
  • 58. Physical Review E, 58 (1998), 1383-1403.
  • 59. Mathematical Biosciences, 110 (1992), 45-66.
  • 60. Theoretical Population Biology, 48 (1995), 7-43.
  • 61. in "Proceedings of the Zoological Society of London," 105, Wiley Online Library, (1935), 551-598.
  • 62. Springer, New York, 1980, xiii+254.
  • 63. Veterinary Immunology and Immunopathology, 96 (2003), 193-205.
  • 64. Wiley, New York, 1998.
  • 65. Physical Review E, 68 (2003), p. 046121.
  • 66. Science, 171 (1971), 385-387.
  • 67. Physics Letters A, 280 (2001), 45-52.
  • 68. Mathematical Biosciences, 206 (2007), 108-119.
  • 69. The Journal of Immunology, 182 (2009), 6379-6393.
  • 70. Physica D: Nonlinear Phenomena, 117 (1998), 145-166.
  • 71. Journal of the Royal Society Interface, 5 (2008), 483-505.
  • 72. Physical Review E, 63 (2001), p. 021103.
  • 73. Proceedings of the National Academy of Sciences, 97 (2000), 10322-10324.
  • 74. Biometrika, (1951), 196-218.
  • 75. Physical review letters, 99 (2007), 234503.
  • 76. Memoires de lAcademie Royale des Sciences et des Belles-Lettres de Bruxelles, 18 (1845), 1-45.
  • 77. Mem. Acad, Lincei 22, 31, 113 (1926).
  • 78. Journal of Physics: Condensed Matter, 19 (2007), 065139.
  • 79. Physica D: Nonlinear Phenomena, 237 (2008), 2553-2562.

 

This article has been cited by

  • 1. Hilla Behar, Naama Brenner, Yoram Louzoun, Coexistence of productive and non-productive populations by fluctuation-driven spatio-temporal patterns, Theoretical Population Biology, 2014, 96, 20, 10.1016/j.tpb.2014.06.002
  • 2. Yoram Louzoun, Rebecca Mitchell, Hilla Behar, Ynte Schukken, Two state model for a constant disease hazard in paratuberculosis (and other bovine diseases), Veterinary Research, 2015, 46, 1, 10.1186/s13567-015-0189-9
  • 3. Hilla Behar, Yoram Louzoun, Commensal pathogens as a source of a coexistence mechanism, Journal of Theoretical Biology, 2015, 370, 45, 10.1016/j.jtbi.2015.01.030
  • 4. H Behar, N Brenner, G Ariel, Y Louzoun, Fluctuations-induced coexistence in public goods dynamics, Physical Biology, 2016, 13, 5, 056006, 10.1088/1478-3975/13/5/056006
  • 5. N. Dori, H. Behar, H. Brot, Y. Louzoun, Family-size variability grows with collapse rate in a birth-death-catastrophe model, Physical Review E, 2018, 98, 1, 10.1103/PhysRevE.98.012416

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved