Mathematical Biosciences and Engineering, 2013, 10(2): 463-481. doi: 10.3934/mbe.2013.10.463

Primary: 92D25, 92D30; Secondary: 37G99.

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

On latencies in malaria infections and their impact on the disease dynamics

1. Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 5B7
2. Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7

In this paper, we modify the classic Ross-Macdonald model for malaria disease dynamics by incorporating latencies both for human beings and female mosquitoes. One novelty of our model is that we introduce two general probability functions ($P_1(t)$ and $P_2(t)$) to reflect the fact that the latencies differ from individuals to individuals. We justify the well-posedness of the new model, identify the basic reproduction number $\mathcal{R}_0$ for the model and analyze the dynamics of the model. We show that when $\mathcal{R}_0 <1 the="" disease="" free="" equilibrium="" e_0="" is="" globally="" asymptotically="" stable="" meaning="" that="" the="" malaria="" disease="" will="" eventually="" die="" out="" and="" if="" mathcal="" r="" _0="">1$, $E_0$ becomes unstable.When $\mathcal{R}_0 >1$, we consider two specific forms for $P_1(t)$ and $P_2(t)$: (i) $P_1(t)$ and $P_2(t)$ are both exponential functions; (ii) $P_1(t)$ and $P_2(t)$ are both step functions.For (i), the model reduces to an ODE system, and for (ii), the long term disease dynamics are governed by a DDE system. In both cases, we are able to show that when $\mathcal{R}_0>1$ then the disease will persist; moreover if there is no recovery ($\gamma_1=0$), then all admissible positive solutions will converge to the unique endemic equilibrium. A significant impact of the latencies is that they reduce the basic reproduction number, regardless of the forms of the distributions.
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved