Mathematical Biosciences and Engineering, 2013, 10(2): 399-424. doi: 10.3934/mbe.2013.10.399.

Primary: 92B05, 35Kxx, 35C07; Secondary: 92D25, 92D40, 35B35.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Competition of motile and immotile bacterial strains in a petri dish

1. Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1

Bacterial competition is an important component in many practicalapplications such as plant roots colonization and medicine(especially in dental plaque). Bacterial motility has two types ofmechanisms --- directed movement (chemotaxis) and undirectedmovement. We study undirected bacterial movement mathematically andnumerically which is rarely considered in literature. To studybacterial competition in a petri dish, we modify and extend themodel used in Wei et al. (2011) to obtain a group of more generaland realistic PDE models. We explicitly consider the nutrients andincorporate two bacterial strains characterized by motility. We usedifferent nutrient media such as agar and liquid in the theoreticalframework to discuss the results of competition. The consistency ofour numerical simulations and experimental data suggest theimportance of modeling undirected motility in bacteria. In agar themotile strain has a higher total density than the immotile strain,while in liquid both strains have similar total densities.Furthermore, we find that in agar as bacterial motility increases,the extinction time of the motile bacteria decreases withoutcompetition but increases in competition. In addition, we show theexistence of traveling-wave solutions mathematically andnumerically.
  Figure/Table
  Supplementary
  Article Metrics

Keywords partial differential equation.; Motility; competition; traveling-wave solution; diffusion; extinction time

Citation: Silogini Thanarajah, Hao Wang. Competition of motile and immotile bacterial strains in a petri dish. Mathematical Biosciences and Engineering, 2013, 10(2): 399-424. doi: 10.3934/mbe.2013.10.399

References

  • 1. 2007.
  • 2. SIAM. J. Appl. Math., 60 (2000), 371-391.
  • 3. Micro. Bio., 149 (2003), 2859-2871.
  • 4. Proceedings of the National Academy of Sciences of the United States of America, 96 (1999), 8052-8057.
  • 5. J. Phys. Soc. Jpn., 58 (1989), 3875-3878.
  • 6. J. Phys. Soc. Jpn., 60 (1991), 88-94.
  • 7. Nature Reviews Microbiology, 8 (2010), 15-25.
  • 8. Developmental and Cell Biology Series, 40 (2005).
  • 9. Bull. of Math. Biol., 42 (1980), 397-429.
  • 10. Antibiotics and Chemotherapy, 19 (1974), 79-93.
  • 11. Micro. Biol., 16 (1988), 115-131.
  • 12. Research Article, 11 (2005), 53-57.
  • 13. Micro. Biol., 153 (2007), 2803-2816.
  • 14. Micro. Ecol., 7 (1981), 207-227.
  • 15. Biophys. J., 40 (1982), 209-219.
  • 16. Bio. Tech. and Bio. Eng., xxv (1983), 2103-2125.
  • 17. Physica A: Statistical Mechanics and Its Applications, 274 (1999), 190-199.
  • 18. Biofilms, 1 (2004), 305-317.
  • 19. Physica. A. Stat. Mech. Appl., 282 (2000), 283-303.
  • 20. $1^{st}$, $3^{rd}$ edition, USA, 2002.
  • 21. Polish Journal of Environmental Studies, 6 (1999), 409-416.
  • 22. Bull. Math. Biophys., 15 (1953), 311-338.
  • 23. J. Theor. Biol., 52 (1975), 121-142.
  • 24. Geobiology, 8 (2010), 179-190.
  • 25. PNAS, 98 (2001), 6901-6904.
  • 26. J. General Microbiology, 136 (1990), 1001-1007.
  • 27. J. Phys. Soc. Jpn., 78 (2009), 074005 (6 pages).
  • 28. PNAS, 108 (2011), 4047-4052.
  • 29. 2 1998.
  • 30. Current Biology, 8 (1998), 408-411.
  • 31. J. Bacteriology, 155 (1983), 228-237.
  • 32. J. Bacteriology, 119 (1974), 640-642.

 

This article has been cited by

  • 1. Tianran Zhang, Wendi Wang, Kaifa Wang, Minimal wave speed of a bacterial colony model, Applied Mathematical Modelling, 2016, 40, 23-24, 10419, 10.1016/j.apm.2016.07.028
  • 2. Tianran Zhang, Qingming Gou, Minimal Wave Speed of Bacterial Colony Model with Saturated Functional Response, Abstract and Applied Analysis, 2014, 2014, 1, 10.1155/2014/510671

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved