Mathematical Biosciences and Engineering, 2013, 10(1): 19-35. doi: 10.3934/mbe.2013.10.19.

Primary: 34K11, 34K13, 34K18, 34K20, 49K25; Secondary: 92B05, 93C23.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Model of tumour angiogenesis -- analysis of stability with respect to delays

1. Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw

In the paper we consider the model of tumour angiogenesis process proposed by Bodnar&Foryś (2009). The model combines ideas of Hahnfeldt et al. (1999) and Agur et al. (2004) describing the dynamics of tumour, angiogenic proteins and effective vessels density. Presented analysis is focused on the dependance of the model dynamics on delays introduced to the system. These delays reflect time lags in the proliferation/death term and the vessel formation/regression response to stimuli.It occurs that the dynamics strongly depends on the model parameters and the behaviour independent of the delays magnitude as well as multiple stability switches with increasing delay can be obtained.
  Figure/Table
  Supplementary
  Article Metrics

Keywords angiogenesis; stability analysis; tumour growth.; Hopf bifurcation; Delay differential equations

Citation: Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Ewa Nizińska. Model of tumour angiogenesis -- analysis of stability with respect to delays. Mathematical Biosciences and Engineering, 2013, 10(1): 19-35. doi: 10.3934/mbe.2013.10.19

References

  • 1. Discrete Contin. Dyn. Syst. B, 4 (2004), 29-38.
  • 2. European J. Cancer, 41 (2005), 159-167.
  • 3. Angiogenesis, 5 (2002), 203-214.
  • 4. J. Biol. Sys., 17 (2009), 1-25.
  • 5. Funkcj. Ekvacioj, 29 (1986), 77-90.
  • 6. Math. Biosci., 191 (2004), 159-184.
  • 7. Applied Mathematics and Computation, 181 (2006), 1155-1162.
  • 8. Math. Med. Biol., 26 (2009), 63-95.
  • 9. Math. Biosci. Eng., 222 (2009), 13-26.
  • 10. Nat. Rev. Clin. Oncol., 8, 1-12.
  • 11. J. Biol. Sys., 12 (2004), 45-60.
  • 12. Math. Biosci. Eng., 2 (2005), 511-525.
  • 13. Int J Appl Math Comput Sci, 3 (2003), 395-406.
  • 14. Neoplasia, 1 (1999), 226-230.
  • 15. Cancer Res., 59 (1999), 4770-4775 (eng).
  • 16. Springer, New York, 1977.
  • 17. Springer, New York, 1993.
  • 18. Oncogene, 18 (1999), 5356-5362.
  • 19. Science, 307 (2005), 58-62 (eng).
  • 20. Academic Press Inc., 1993.
  • 21. Bull Math Biol, 56 (1994), 295-321.
  • 22. SIAM J. Control Optim., 46 (2007), 1052-1079.
  • 23. J. Theor. Biol., 252 (2008), 295-312.
  • 24. J. Math. Anal. Appl., 382 (2011), 180-203.
  • 25. Math. and Comp. Modelling, 54 (2011), 2183-2198.
  • 26. Appl. Math., 36 (2009), 333-348.
  • 27. in "Proc: IASTED Biomechanics 2006" Actapress, (2006).
  • 28. J. Cancer Mol. 4 (2008), 37-45.

 

This article has been cited by

  • 1. Marek Bodnar, Monika Joanna Piotrowska, Stability analysis of the family of tumour angiogenesis models with distributed time delays, Communications in Nonlinear Science and Numerical Simulation, 2016, 31, 1-3, 124, 10.1016/j.cnsns.2015.08.002
  • 2. Leonid Berezansky, Elena Braverman, Lev Idels, Effect of treatment on the global dynamics of delayed pathological angiogenesis models, Journal of Theoretical Biology, 2014, 363, 13, 10.1016/j.jtbi.2014.08.012
  • 3. Stephen Lynch, , Dynamical Systems with Applications Using Mathematica®, 2017, Chapter 12, 257, 10.1007/978-3-319-61485-4_12
  • 4. Urszula Foryś, Monika J. Piotrowska, Analysis of the Hopf bifurcation for the family of angiogenesis models II: The case of two nonzero unequal delays, Applied Mathematics and Computation, 2013, 220, 277, 10.1016/j.amc.2013.05.077
  • 5. Marek Bodnar, Pilar Guerrero, Ruben Perez-Carrasco, Monika J. Piotrowska, Grant Lythe, Deterministic and Stochastic Study for a Microscopic Angiogenesis Model: Applications to the Lewis Lung Carcinoma, PLOS ONE, 2016, 11, 5, e0155553, 10.1371/journal.pone.0155553
  • 6. Emad Attia, Marek Bodnar, Urszula Foryś, Angiogenesis model with Erlang distributed delays, Mathematical Biosciences and Engineering, 2016, 14, 1, 1, 10.3934/mbe.2017001
  • 7. Stephen Lynch, , Dynamical Systems with Applications using Python, 2018, Chapter 12, 297, 10.1007/978-3-319-78145-7_12
  • 8. Natalia Z. Bielczyk, Katarzyna Piskała, Martyna Płomecka, Piotr Radziński, Lara Todorova, Urszula Foryś, Gennady Cymbalyuk, Time-delay model of perceptual decision making in cortical networks, PLOS ONE, 2019, 14, 2, e0211885, 10.1371/journal.pone.0211885
  • 9. Stephen Lynch, Jon Borresen, , Handbook of Vascular Biology Techniques, 2015, Chapter 29, 373, 10.1007/978-94-017-9716-0_29
  • 10. Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Existence and stability of oscillating solutions for a class of delay differential equations, Nonlinear Analysis: Real World Applications, 2013, 14, 3, 1780, 10.1016/j.nonrwa.2012.11.010

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved