Mathematical Biosciences and Engineering, 2013, 10(5&6): 1587-1607. doi: 10.3934/mbe.2013.10.1587.

Primary: 91D99, 91E99; Secondary: 92D25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions

1. Mathematics Department, University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408

Mathematical models are well-established as metaphors for biological and epidemiological systems. The framework of epidemic modeling has also been applied to sociological phenomena driven by peer pressure, notably in two dozen dynamical systems research projects developed through the Mathematical and Theoretical Biology Institute, and popularized by authors such as Gladwell (2000). This article reviews these studies and their common structures, and identifies a new mathematical metaphor which uses multiple nonlinearities to describe the multiple thresholds governing the persistence of hierarchical phenomena, including the situation termed a ``backward bifurcation'' in mathematical epidemiology, where established phenomena can persist in circumstances under which the phenomena could not initially emerge.
  Figure/Table
  Supplementary
  Article Metrics

Keywords metaphor.; Backward bifurcation; dynamical systems; epidemic; multiple nonlinearities

Citation: Christopher M. Kribs-Zaleta. Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1587-1607. doi: 10.3934/mbe.2013.10.1587

References

  • 1. Biometrics Unit Technical Report BU-1525-M, Cornell University, 2000. Available from: http://mtbi.asu.edu/research/archive.
  • 2. J. Political Economy, 58 (1950), 211-221.
  • 3. MCMSC Technical Report MTBI-08-08M, Arizona State University, 2011. Available from: http://mtbi.asu.edu/research/archive.
  • 4. Physica A, 364 (2006), 513-536.
  • 5. Studies in Theoretical Biology: A Collection of Undergraduate Research, 1 (2000), 549-580; Biometrics Unit Technical Report BU-815, Cornell University. Available from: http://mtbi.asu.edu/research/archive.
  • 6. Biometrics Unit Technical Report BU-1504-M, Cornell University, 1997. Available from: http://mtbi.asu.edu/research/archive.
  • 7. Biometrics Unit Technical Report BU-1505-M, Cornell University, 1997. Available from: http://mtbi.asu.edu/research/archive.
  • 8. Amer. J. Soc., 95 (1989), 1226-1259.
  • 9. Discrete and Continuous Dynamical Systems, Series B, 14 (2010), 17-40.
  • 10. Journal of Mathematical Biology, 28 (1990), 365-382.
  • 11. Biometrics Unit Technical Report BU-1616-M, Cornell University, 2002. Available from: http://mtbi.asu.edu/research/archive.
  • 12. MCMSC Technical Report MTBI-01-3M, Arizona State University, 2004. Available from: http://mtbi.asu.edu/research/archive.
  • 13. Little, Brown & Co., New York, 2000.
  • 14. J. Math. Soc., 17 (1993), 281-302.
  • 15. Journal of Mathematical Psychology, 47 (2003), 515-526.
  • 16. Am. J. Soc., 83 (1978), 1420-1443.
  • 17. J. Math. Soc., 9 (1983), 165-179.
  • 18. in "Creativity, Psychology and the History of Science'' (eds. Howard E. Gruber and Katja Bodeker), Springer, New York, (2005), 259-270.
  • 19. Math. Biosciences, 128 (1995), 41-55.
  • 20. Acta Biotheoretica, 50 (2002), 189-204.
  • 21. Proc. Royal Soc. Edin. A, 115 (1927), 700-721; Reprinted in Bull. Math. Biol., 53 (1991), 33-55.
  • 22. Proc. Royal Soc. Edin. A, 138 (1932), 55-83; Reprinted in Bull. Math. Biol., 53 (1991), 57-87.
  • 23. Proc. Royal Soc. Edin. A, 141 (1933), 94-122; Reprinted in Bull. Math. Biol., 53 (1991), 89-118.
  • 24. Math. Biosci. Eng., 7 (2010), 657-673.
  • 25. Math. Biosciences, 164 (2000), 183-201.
  • 26. Socio-Economic Planning Sciences, 43 (2010), 1-12.
  • 27. Harvard Univ. Press, Cambridge, MA, 1982.
  • 28. Amer. Economic Review, 42 (1952), 804-819.
  • 29. Springer-Verlag, New York, 1992.
  • 30. Discrete and Continuous Dynamical Systems, Series B, 15 (2011), 707-738.
  • 31. Second edition, Murray, London, 1911.
  • 32. in "Therapist's Guide to Evidence-Based Relapse Prevention'' (eds. Katie Witkiewitz and G. Alan Marlatt), Academic Press/Elsevier, (2007), 353-368.
  • 33. J. Math. Soc., 1 (1971), 143-186.
  • 34. MCMSC Technical Report MTBI-04-07M, Arizona State University, 2007. Available from: http://mtbi.asu.edu/research/archive.
  • 35. Mathematical Biosciences and Engineering, 3 (2006), 249-266.
  • 36. Mathematical Biosciences, 180 (2002), 29-48.
  • 37. J. Math. Soc., 18 (1994), 267-291.
  • 38. Harwood Academic Publishers, Amsterdam, 2000.

 

This article has been cited by

  • 1. MARK IAN NELSON, PETER HAGEDOORN, ANNETTE L. WORTHY, THE DEMON DRINK, The ANZIAM Journal, 2017, 59, 02, 135, 10.1017/S1446181117000347
  • 2. D. M. G. Comissiong, J. Sooknanan, A review of the use of optimal control in social models, International Journal of Dynamics and Control, 2018, 10.1007/s40435-018-0405-3
  • 3. Guy Katriel, The dynamics of two-stage contagion, Chaos, Solitons & Fractals: X, 2019, 100010, 10.1016/j.csfx.2019.100010

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, Christopher M. Kribs-Zaleta, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved