Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On optimal and suboptimal treatment strategies for a mathematical model of leukemia

1. Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim
2. Moscow State University of Railway Engineering, Obraztsova 15, Moscow, 127994

In this work an optimization problem for a leukemia treatment modelbased on the Gompertzian law of cell growth is considered. The quantitiesof the leukemic and of the healthy cells at the end of the therapy are chosenas the criterion of the treatment quality. In the case where the number ofhealthy cells at the end of the therapy is higher than a chosen desired number,an analytical solution of the optimization problem for a wide class of therapyprocesses is given. If this is not the case, a control strategy called alternative issuggested.
  Figure/Table
  Supplementary
  Article Metrics

Keywords cancer model.; Optimal therapy control; chemotherapy

Citation: Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences and Engineering, 2013, 10(1): 151-165. doi: 10.3934/mbe.2013.10.151

References

  • 1. in "Computational Medicine, Public Health, and Biotechnology Part I. World Scientific" New Jersey, (1995), pp. 397.
  • 2. in "Mathematical Models in Medical and Health Sciences" (eds. M. A. Horn, G. Simonett and G. F. Webb), Vanderbilt University. Nashville, (1998), 1-8.
  • 3. Comm. Theor. Biol., 8 (2003), 225-253.
  • 4. J. Can. Det. Prev.,, 20 (1996), 171-179.
  • 5. Math. Biosci., 138 (1996), 79-100.
  • 6. Zh. Vychisl. Mat. Mat. Fiz., 49 (2009), 1907-1919
  • 7. Nonlinear Analysis: Real World Applications, 13 (2012), 1044-1059.
  • 8. Cancer, 30 (1972), 1572-1582.
  • 9. Cell Tissue Kinet., 18 (1985), 307-319.
  • 10. Mathematical Biosciences, 229 (2011), 123-134.
  • 11. Springer, 1988.
  • 12. SIAM Journal on Applied Mathematics, 63 (2003), 1954-1971.
  • 13. SIAM Journal on Applied Mathematics, 60 (2000), 1059-1072.
  • 14. SIAM J. Appl. Math., 46 (1986), 614-624.
  • 15. J. Theor. Biol., 225 (2003), 147-151.
  • 16. World Scientific. Vol. 9, 2008.
  • 17. Clin. Pharmacokin, 6 (1981), 429-453.
  • 18. Prentice-Hall, 1970
  • 19. Mathematical Biosciences, 222 (2009), 13-26.
  • 20. Mathematical Biosciences, 206 (2007), 320-342.
  • 21. IMA J. Math. Appl. Med. Biol., 18 (2001), 25-40.
  • 22. Nature Clinical Practice, 3 Nr. 8, (2006).
  • 23. Cancer Treat Rep., 61(1977) Oct, 1307-1317. PubMed PMID: 589597.
  • 24. Mathematical Biosciences, 146 (1997), 89-113.
  • 25. Biophys. J., 16 (1976), 897-910.
  • 26. Cancer Chemo. Rep., 25 (1964), 1-111.
  • 27. Clin. Pharmacology & Therapeutics, 71 (2002), pp.304.
  • 28. Bull. Math. Biol., 39 (1977), 317-337.
  • 29. Russian Journal of Numerical Analysis and Mathematical Modelling, 26 (2011), 589-604.

 

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved