Mathematical Biosciences and Engineering, 2013, 10(4): 1135-1157. doi: 10.3934/mbe.2013.10.1135.

Primary: 92B05, 34C23, 34C60.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Saturated treatments and measles resurgence episodes in South Africa: A possible linkage

1. Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, I-03043 Cassino

We consider the case of measles in South Africa to show that an high vaccination coverage may be not enough - alone - to ensure measles eradication. The occurrence of certain epidemic episodes may in fact be encouraged by delays in the treatments or by not adequately fast clinical case management, which may be related to the backward bifurcation phenomenon as well as to an intriguing spiking dynamics which appears in the system for specific ranges of parameter values.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Epidemic models; saturated treatments; measles.; backward bifurcation; spiking dynamics

Citation: Deborah Lacitignola. Saturated treatments and measles resurgence episodes in South Africa: A possible linkage. Mathematical Biosciences and Engineering, 2013, 10(4): 1135-1157. doi: 10.3934/mbe.2013.10.1135

References

  • 1. Oxford University Press, Oxford, 1991.
  • 2. SIAM J. Appl. Math., 64 (2003), 260-276.
  • 3. Journal of Biological Dynamics, 5 (2011), 410-418.
  • 4. Microbes and Infection, 7 (2005), 593-599.
  • 5. Ric. Mat., 57 (2008), 261-281.
  • 6. J. Biol. Dyn., 4 (2010), 571-593.
  • 7. Nonlinear Analysis: Modelling and Control, 16 (2011), 30-46.
  • 8. Math. Biosci. Engin., 1 (2004), 361-404.
  • 9. MMWR, 48 (1999), 585-589.
  • 10. Comm. Dis. Surveill. Bull., 8 (2009), 2-3.
  • 11. Journal of Theoretical Biology, 254 (2008), 275-283.
  • 12. Discrete Contin. Dynam. Syst. Ser. B, 3 (2003), 299-309.
  • 13. Journal of Infectious Diseases, 189 (2004), S227-S235.
  • 14. J. Math. Biol., 36 (1998), 227-248.
  • 15. Math. Biosci., 128 (1995), 93-130.
  • 16. Theor. Popul. Biol., 57 (2000), 235-247.
  • 17. Cambridge University Press, 1994.
  • 18. J. Math. Biol., 51 (2005), 414-430.
  • 19. J. Math. Biol., 59 (2009), 1-36.
  • 20. Springer-Verlag, Berlin, 1983.
  • 21. App. Math. Comput., 143 (2003), 409-419.
  • 22. Proc. R. Soc. London B, 271 (2004), 2223-2232.
  • 23. Math. Biosci., 146 (1997), 15-35.
  • 24. American Public Health Association, Washington, 2008.
  • 25. SIAM J. Appl. Math., 52 (1992), 835-854.
  • 26. Math. Biosci., 190 (2004), 39-69.
  • 27. Vaccine, 21 (2003), 473-478.
  • 28. Chaos Solitons Fractals, 34 (2007), 1482-1497.
  • 29. Proc. R. Soc. A, 115 (1927), 700-721. (Reprinted with parts II. and III. in Bulletin of Mathematical Biology, 53 (1991), 33-118.)
  • 30. Math. Biosci., 164 (2000), 183-201.
  • 31. Institute for Mathematics and Its Applications, 125 (2000), 269-286.
  • 32. in "Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory," IMA Math. Appl., 126 (2002), 295-311.
  • 33. J. Math. Biol., 23 (1986), 187-204.
  • 34. J. Math. Biol., 46 (2003), 385-424.
  • 35. Comm. Dis. Surveill. Bull., 7 (2009), 15-21.
  • 36. S. Afr. Med. J., 99 (2009), 314-319.
  • 37. Nat. Med., 5 (2001), 619-624.
  • 38. Springer, Berlin, 1998.
  • 39. J. R. Soc. Interface, 4 (2007), 949-961.
  • 40. SIAM J. Appl. Math., 69 (2008), 621-639.
  • 41. J. Math. Biol., 53 (2006), 703-718.
  • 42. Available on line at: http://www.unicef.org/infobycountry/southafrica_statistics.html.
  • 43. Int. J. Epidemiol., 31 (2002), 968-976.
  • 44. J. Math. Biol., 40 (2000), 525-540.
  • 45. Vaccine, 30 (2012), 1594-1600.
  • 46. Math. Biosci., 201 (2006), 58-71.
  • 47. Acta Matematicae Applicatae Sinica, English Series, 25 (2009), 127-136.
  • 48. World Health Organization. Available from http://www.who.int/immunization_delivery/adc/measles/Measles Global Plan_Eng.pdf.
  • 49. Lancet, 369 (2007), 191-200.
  • 50. J. Differential Equations, 168 (2000), 150-167.
  • 51. J. Math. Anal. Appl., 348 (2008), 433-443.
  • 52. J. Appl. Math. Comput., 34 (2010), 177-194.
  • 53. Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 4438-4450.

 

This article has been cited by

  • 1. Sandeep Sharma, Nitu Kumari, Backward Bifurcation in a Cholera Model: A Case Study of Outbreak in Zimbabwe and Haiti, International Journal of Bifurcation and Chaos, 2017, 27, 11, 1750170, 10.1142/S021812741750170X
  • 2. Kimberly M. Thompson, Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis, Risk Analysis, 2016, 36, 7, 1383, 10.1111/risa.12637
  • 3. Luigi Fattorini, Deborah Lacitignola, Functionality indexes assessed through a simple model of muscle activation, fatigue and recovery, International Journal of Biomathematics, 2014, 07, 02, 1450022, 10.1142/S1793524514500223
  • 4. Yanju Xiao, Weipeng Zhang, Guifeng Deng, Zhehua Liu, Stability and Bogdanov-Takens Bifurcation of an SIS Epidemic Model with Saturated Treatment Function, Mathematical Problems in Engineering, 2015, 2015, 1, 10.1155/2015/745732
  • 5. Hailay Weldegiorgis Berhe, Oluwole Daniel Makinde, David Mwangi Theuri, Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis, Applied Mathematics and Computation, 2019, 347, 903, 10.1016/j.amc.2018.11.049
  • 6. K. Nudee, S. Chinviriyasit, W. Chinviriyasit, The effect of backward bifurcation in controlling measles transmission by vaccination, Chaos, Solitons & Fractals, 2019, 123, 400, 10.1016/j.chaos.2019.04.026
  • 7. Deborah Lacitignola, Fasma Diele, On the Z-type control of backward bifurcations in epidemic models, Mathematical Biosciences, 2019, 108215, 10.1016/j.mbs.2019.108215

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved