Mathematical Biosciences and Engineering, 2013, 10(1): 103-120. doi: 10.3934/mbe.2013.10.103.

Primary: 92C42; Secondary: 92C40.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Parameter space exploration within dynamic simulations of signaling networks

1. DIBRIS Department of Informatics, Bioengineering, Robotics and Systems Engineering, Università degli Studi di Genova - Via Balbi, 5 - 16126 Genova
2. DIBRIS Department of Informatics, Bioengineering, Robotics and Systems Engineering, Università degli Studi di Genova - Via Balbi, 5 - 16126 Genov
3. DiMa - Department of Management, Università Ca' Foscari - Dorsoduro 3246 - 30123 Venezia
4. Di.M.I - Department of Internal Medicine, A.O.U. IRCCS San Martino IST

We started offering an introduction to very basic aspects of molecular biology, for the reader coming from computer sciences, information technology, mathematics. Similarly we offered a minimum of information about pathways and networks in graph theory, for a reader coming from the bio-medical sector. At the crossover about the two different types of expertise, we offered some definition about Systems Biology. The core of the article deals with a Molecular Interaction Map (MIM), a network of biochemical interactions involved in a small signaling-network sub-region relevant in breast cancer. We explored robustness/sensitivity to random perturbations. It turns out that our MIM is a non-isomorphic directed graph. For non physiological directions of propagation of the signal the network is quite resistant to perturbations. The opposite happens for biologically significant directions of signal propagation. In these cases we can have no signal attenuation, and even signal amplification. Signal propagation along a given pathway is highly unidirectional, with the exception of signal-feedbacks, that again have a specific biological role and significance. In conclusion, even a relatively small network like our present MIM reveals the preponderance of specific biological functions over unspecific isomorphic behaviors. This is perhaps the consequence of hundreds of millions of years of biological evolution.
  Figure/Table
  Supplementary
  Article Metrics

Keywords parameter space exploration.; dynamicsimulations; Molecular Interaction Maps; Systems biology; signaling networks

Citation: Cristina De Ambrosi, Annalisa Barla, Lorenzo Tortolina, Nicoletta Castagnino, Raffaele Pesenti, Alessandro Verri, Alberto Ballestrero, Franco Patrone, Silvio Parodi. Parameter space exploration within dynamic simulations of signaling networks. Mathematical Biosciences and Engineering, 2013, 10(1): 103-120. doi: 10.3934/mbe.2013.10.103

References

  • 1. Blackwell Science Ltd. Reprinted, 1995
  • 2. Blackwell Publishing Company, 2004.
  • 3. Annu Rev Genomics Hum Genet., 2 (2001), 343-372.
  • 4. Nature, 420 (2002), 206-210.
  • 5. Mech Ageing Dev., 124 (2003), 9-16.
  • 6. World Technology Evaluation Center. SpringerLink, Chapter I, (2007), 1-13.
  • 7. Trends Microbiol., 15 (2007), 45-50.
  • 8. Nature, 387 (1997), 913-917.
  • 9. Nat. Rev. Mol. Cell Biol., 7 (2006), 165-176.
  • 10. Mol Syst Biol., 5 (2009), 256.
  • 11. Current Cancer Drug Target (CCDT), 12 (2012), 339-355.
  • 12. Proc Natl Acad Sci U S A., 99 (2002), 15112-15117.
  • 13. Nat Genet., 37 (2005), 77-83.
  • 14. Drug Discov Today, 12 (2007), 295-303.
  • 15. J. Phys.Chem., 81 (1977), 2340-2361.
  • 16. Nat Rev Genet., 10 (2009), 122-33.
  • 17. Science, 314 (2006), 268-274.
  • 18. Science, 318 (2007), 1108-1113.
  • 19. FASEB J., 22 (2008), 2605-2622.
  • 20. Sci STKE., 222 (2004), pe8.
  • 21. Mol. Biol. Cell, 17 (2006), 1-13.
  • 22. Mol Syst Biol., 2 (2006), 51.
  • 23. BMC Bioinformatics, 12 (2011), 167.
  • 24. Version 0.5 2010 November 30.
  • 25. http://globocan.iarc.fr/.
  • 26. N Engl J Med., 332 (1995), 1589-1593.
  • 27. http://www.sanger.ac.uk/genetics/CGP/cosmic/.
  • 28. Biochemistry, 45 (2006), 15529-15540.
  • 29. Biochem. J., 382 (2004), 1-11.
  • 30. Breast Cancer Res. Treat., 101 (2007), 249-257.
  • 31. Current Cancer Drug Targets (CCDT), 10 (2010), 737-757.
  • 32. Trends Cell Biol., 10 (2000), 173-178.
  • 33. FEBS J., 274 (2007), 5505-5517.
  • 34. J Biol. Chem., 274 (1999), 30169-30181.
  • 35. Syst Biol (Stevenage), 1 2004, 104-113.
  • 36. J. Biol. Chem., 281 (2006), 19925-19938.
  • 37. Mol. Syst. Biol., 3 (2007), e144.
  • 38. Mol. Syst. Biol., 5 (2009), e239.
  • 39. Cell., 141 (2010), 884-896.
  • 40. Springer-Verlag, 1996.
  • 41. Trends Biochem. Sci., 21 (1996), 89-96.
  • 42. J Biol Chem., 284 (2009), 35308-35313.
  • 43. F1000 Biol Rep., 2 (2010), 82.

 

This article has been cited by

  • 1. Nicoletta Castagnino, Massimo Maffei, Lorenzo Tortolina, Gabriele Zoppoli, Daniela Piras, Alessio Nencioni, Alberto Ballestrero, Franco Patrone, Silvio Parodi, Transcription Factors Synergistically Activated at the Crossing of the Restriction Point between G1 and S Cell Cycle Phases. Pathologic Gate Opening during Multi-Hit Malignant Transformation, Nuclear Receptor Research, 2016, 3, 10.11131/2016/101201
  • 2. Nicoletta Castagnino, Massimo Maffei, Lorenzo Tortolina, Gabriele Zoppoli, Daniela Piras, Alessio Nencioni, Eva Moran, Alberto Ballestrero, Franco Patrone, Silvio Parodi, Systems medicine in colorectal cancer: from a mathematical model toward a new type of clinical trial, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 4, 314, 10.1002/wsbm.1342
  • 3. Silvio Parodi, Giuseppe Riccardi, Nicoletta Castagnino, Lorenzo Tortolina, Massimo Maffei, Gabriele Zoppoli, Alessio Nencioni, Alberto Ballestrero, Franco Patrone, , Systems Medicine, 2016, Chapter 10, 181, 10.1007/978-1-4939-3283-2_10

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved