Mathematical Biosciences and Engineering, 2013, 10(1): 1-17. doi: 10.3934/mbe.2013.10.1.

Primary: 92B05; Secondary: 92C37, 92D25, 35Q92.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Age-structured cell population model to study the influence of growth factors on cell cycle dynamics

1. INRIA Paris-Rocquencourt, Domaine de Voluceau, Rocquencourt, B.P. 105, F-78153 Le Chesnay Cedex
2. Universite Nice-Sophia-Antipolis, Institute of Biology Valrose, CNRS, UMR 7277, INSERM, U1091, 28, avenue Valrose, F-06108, Nice Cedex 02,
3. Université Nice-Sophia-Antipolis, Institute of Biology Valrose, CNRS, UMR 7277, INSERM, U1091, 28, avenue Valrose, F-06108, Nice Cedex 02
4. School of Medicine, Université Paris V - Rene Descartes, 12, rue de l'Ecole de Medecine, F-75270, Paris Cedex 06

Cell proliferation is controlled by many complex regulatory networks. Our purpose is to analyse, through mathematical modeling, the effects of growth factors on the dynamics of the division cycle in cell populations.
    Our work is based on an age-structured PDE model of the cell division cycle within a population of cells in a common tissue. Cell proliferation is at its first stages exponential and is thus characterised by its growth exponent, the first eigenvalue of the linear system we consider here, a growth exponent that we will explicitly evaluate from biological data.Moreover, this study relies on recent and innovative imaging data (fluorescence microscopy) that make us able to experimentally determine the parameters of the model and to validate numerical results.This model has allowed us to study the degree of simultaneity of phase transitions within a proliferating cell population and to analyse the role of an increased growth factor concentration in this process.
    This study thus aims at helping biologists to elicit the impact of growth factor concentration on cell cycle regulation, at making more precise the dynamics of key mechanisms controlling the division cycle in proliferating cell populations, and eventually at establishing theoretical bases for optimised combined anticancer treatments.
  Figure/Table
  Supplementary
  Article Metrics

Keywords cell division cycle; growth factors; adaptive dynamics.; proliferation; Cell population dynamics

Citation: Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences and Engineering, 2013, 10(1): 1-17. doi: 10.3934/mbe.2013.10.1

References

  • 1. Acta Biotheor., 43 (1995), 3-25.
  • 2. SIAM J. Appl. Math., 53 (1993), 1480-1504.
  • 3. J. Theor. Med., 1 (1997), 35-51.
  • 4. Math. Biosci., 218 (2009), 1-14.
  • 5. Bull Math. Biol., 67 (2005), 815-830.
  • 6. Bull Math. Biol., 69 (2007) 1673-1690.
  • 7. Mathematical Modelling of Natural Phenomena, 7 (2012) 306-336.
  • 8. Math. Comp. Simul., 2012. in press, available on line Apr. 2012.
  • 9. Personalized Medicine, 8 (2011), 271-286.
  • 10. Mathematical Modelling of Natural Phenomena, 4 (2009), 183-209.
  • 11. Mathematical and Computer Modelling, 53 (2011), 1558-1567.
  • 12. Technical report, Number 4892, INRIA, Domaine de Voluceau, BP 105, 78153 Rocquencourt, France, 2003.
  • 13. PLoS one, 4 (2009), 1-12.
  • 14. Cell, 64 Jan. (1991), 271-280.
  • 15. Cancer Causes Control, 17 (2006), 539-545.
  • 16. J. Biosci. Bioeng., 114 (2012), 220-227.
  • 17. Cancer Causes Control, 17 (2006), 509-514.
  • 18. Mutat. Res., 680 (2009), 95-105.
  • 19. Genes Cancer, 1 Nov. (2010), 1124-1131.
  • 20. J. Math. Biol., 28 (1990), 671-694.
  • 21. Cancer Causes Control, 17 (2006), 531-537.
  • 22. in "Advances on Estimation of Distribution Algorithms" (editors, J. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea), 75-102. Springer, New York, 2006.
  • 23. Theor. Biol. Med. Model, 4 (2007), pp.14.
  • 24. J. Theor. Biol., 203 (2000), 177-186.
  • 25. Oncogene, 19 Nov. (2000), 5558-5567.
  • 26. Math. Models Methods Appl. Sci., 16 (2006), 1155-1172.
  • 27. Annu. Rev. Pharmacol. Toxicol., 50 (2010), 377-421.
  • 28. Annu. Rev. Pharmacol. Toxicol., 47 (2007), 593-628.
  • 29. Nat. Rev. Mol. Cell Biol., 1 Dec. (2000), 169-178.
  • 30. Cell, 103 Oct. (2000), 295-309.
  • 31. Arch. Med. Res., 39 (2008), 743-752.
  • 32. Proc. Natl. Acad. Sci. USA, 31 (1997), 814-819.
  • 33. Proc. Edinburgh Math. Soc., 54 (1926), 98-130.
  • 34. J. Clin. Oncol., 14 (2003), 2787-2799.
  • 35. volume 68 of Lecture Notes in Biomathematics. Springer, New York, 1986.
  • 36. Proc. Natl. Acad. Sci. USA, 71 (1974), 1286-1290.
  • 37. Frontiers in Mathematics series. Birkhäuser, Boston, 2007.
  • 38. J. Cell Sci. Suppl., 18 (1994), 69-73.
  • 39. Mol. Cell Biol., 14 (1994), 1669-1679.
  • 40. J. Theor. Biol., 243 (2006), 532-541.
  • 41. Cell, 132 (2008), 487-498.
  • 42. Chem. Biol., 15 (2008), 1243-1248.
  • 43. Proc. Natl. Acad. Sci. USA, 105 (2008), 17256-17261.
  • 44. Biotechnol. Bioeng., 99 (2008), 960-974.
  • 45. Nat. Rev. Mol. Cell Biol., 5 Oct. (2004), 836-847.
  • 46. Rocky Mountain J. Math., 20 (1990), 1195-1216.
  • 47. Curr. Opin. Cell Biol., 7 Dec. (1995), 835-842.

 

This article has been cited by

  • 1. Vitalii V. Akimenko, Asymptotically stable states of non-linear age-structured monocyclic population model II. Numerical simulation, Mathematics and Computers in Simulation, 2017, 133, 24, 10.1016/j.matcom.2015.06.003
  • 2. Rebecca H. Chisholm, Tommaso Lorenzi, Jean Clairambault, Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation, Biochimica et Biophysica Acta (BBA) - General Subjects, 2016, 1860, 11, 2627, 10.1016/j.bbagen.2016.06.009
  • 3. Sara Maad Sasane, An age structured cell cycle model with crowding, Journal of Mathematical Analysis and Applications, 2016, 444, 1, 768, 10.1016/j.jmaa.2016.06.065
  • 4. W. Djema, H. Özbay, C. Bonnet, E. Fridman, F. Mazenc, J. Clairambault, Analysis of Blood Cell Production under Growth Factors Switching * *This work is supported by ALMA-project on the «Analysis of Acute Myeloid Leukemia», Paris-Saclay (France), also in part by the PHC Bosphore 2016 France-Turkey under project numbers 35634QM (France) and EEEAG-115E820 TUBITAK)., IFAC-PapersOnLine, 2017, 50, 1, 13312, 10.1016/j.ifacol.2017.08.1331
  • 5. J. Clairambault, O. Fercoq, G. Bocharov, J. Clairambault, V. Volpert, Physiologically Structured Cell Population Dynamic Models with Applications to Combined Drug Delivery Optimisation in Oncology, Mathematical Modelling of Natural Phenomena, 2016, 11, 6, 45, 10.1051/mmnp/201611604
  • 6. Vitalii Akimenko, Roumen Anguelov, Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay, Journal of Biological Dynamics, 2017, 11, 1, 75, 10.1080/17513758.2016.1236988
  • 7. K. Kuritz, D. Stöhr, N. Pollak, F. Allgöwer, On the relationship between cell cycle analysis with ergodic principles and age-structured cell population models, Journal of Theoretical Biology, 2017, 414, 91, 10.1016/j.jtbi.2016.11.024
  • 8. V. V. Akimenko, Yu. V. Zahorodnii, Modeling the Dynamics of Age-Structured Polycyclic Population of Biological Cells on the Parameterized Set of Algebraic Functions, Cybernetics and Systems Analysis, 2014, 50, 4, 578, 10.1007/s10559-014-9646-0
  • 9. Youssef El Alaoui, Larbi Alaoui, Asymptotic Behavior in a Cell Proliferation Model with Unequal Division and Random Transition using Translation Semigroups, Indian Journal of Science and Technology, 2017, 10, 28, 1, 10.17485/ijst/2017/v10i28/101042
  • 10. , , Bioreactor Modeling, 2017, 189, 10.1016/B978-1-78548-116-1.50008-2
  • 11. H.T. Banks, D.F. Kapraun, W. Clayton Thompson, Cristina Peligero, Jordi Argilaguet, Andreas Meyerhans, A novel statistical analysis and interpretation of flow cytometry data, Journal of Biological Dynamics, 2013, 7, 1, 96, 10.1080/17513758.2013.812753
  • 12. Vitalii V. Akimenko, Asymptotically stable states of nonlinear age-structured monocyclic population model I. Travelling wave solution, Mathematics and Computers in Simulation, 2017, 133, 2, 10.1016/j.matcom.2015.06.004
  • 13. Jérôme Morchain, Maxime Pigou, Noureddine Lebaz, A population balance model for bioreactors combining interdivision time distributions and micromixing concepts, Biochemical Engineering Journal, 2017, 126, 135, 10.1016/j.bej.2016.09.005
  • 14. G. Bocharov, A. Bouchnita, J. Clairambault, V. Volpert, G. Bocharov, J. Clairambault, V. Volpert, Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods, Mathematical Modelling of Natural Phenomena, 2016, 11, 6, 1, 10.1051/mmnp/201611601
  • 15. Aaron Goldman, Mohammad Kohandel, Jean Clairambault, Integrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer, Part 2: from Theoretical Biology to Mathematical Models, Current Stem Cell Reports, 2017, 3, 3, 260, 10.1007/s40778-017-0098-0
  • 16. Jean Clairambault, , Mathematical Oncology 2013, 2014, Chapter 9, 265, 10.1007/978-1-4939-0458-7_9
  • 17. Krzysztof Psiuk-Maksymowicz, Damian Borys, Sebastian Student, Andrzej Świerniak, , Information Technologies in Biomedicine, Volume 3, 2014, Chapter 23, 261, 10.1007/978-3-319-06593-9_23
  • 18. Vincent Quedeville, Jérôme Morchain, Philippe Villedieu, Rodney O. Fox, A critical analysis of Powell’s results on the interdivision time distribution, Scientific Reports, 2019, 9, 1, 10.1038/s41598-019-44606-4
  • 19. Ana Victoria Ponce Bobadilla, Thomas Carraro, Helen M. Byrne, Philip K. Maini, Tomás Alarcón, Age Structure Can Account for Delayed Logistic Proliferation of Scratch Assays, Bulletin of Mathematical Biology, 2019, 10.1007/s11538-019-00625-w
  • 20. Annabelle Ballesta, Pasquale F. Innominato, Robert Dallmann, David A. Rand, Francis A. Lévi, Stephanie W. Watts, Systems Chronotherapeutics, Pharmacological Reviews, 2017, 69, 2, 161, 10.1124/pr.116.013441
  • 21. Jong Hyuk Byun, Il Hyo Jung, Mathematical modelling of the receptor-mediated endocytosis process of targeted therapeutic agents in drug delivery systems, Applied Mathematical Modelling, 2019, 10.1016/j.apm.2019.10.037
  • 22. Thibault Bourgeron, Marie Doumic, Miguel Escobedo, Estimating the division rate of the growth-fragmentation equation with a self-similar kernel, Inverse Problems, 2014, 30, 2, 025007, 10.1088/0266-5611/30/2/025007

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved