The implications of model formulation when transitioning from spatial to landscape ecology

  • Received: 01 January 2011 Accepted: 29 June 2018 Published: 01 December 2011
  • MSC : Primary: 92D40; Secondary: 92D25.

  • In this article we compare and contrast the predictions of some spatially explicit and implicit models in the context of a thought problem at the interface of spatial and landscape ecology. The situation we envision is a one-dimensional spatial universe of infinite extent in which there are two disjoint focal patches of a habitat type that is favorable to some specified species. We assume that neither patch is large enough by itself to sustain the species in question indefinitely, but that a single patch of size equal to the combined sizes of the two focal patches provides enough contiguous favorable habitat to sustain the given species indefinitely. When the two patches are separated by a patch of unfavorable matrix habitat, the natural expectation is that the species should persist indefinitely if the two patches are close enough to each other but should go extinct over time when the patches are far enough apart. Our focus here is to examine how different mathematical regimes may be employed to model this situation, with an eye toward exploring the trade-off between the mathematical tractability of the model on one hand and the suitability of its predictions on the other. In particular, we are interested in seeing how precisely the predictions of mathematically rich spatially explicit regimes (reaction-diffusion models, integro-difference models) can be matched by those of ostensibly mathematically simpler spatially implicit patch approximations (discrete-diffusion models, average dispersal success matrix models).

    Citation: Robert Stephen Cantrell, Chris Cosner, William F. Fagan. The implications of model formulation when transitioning from spatial to landscape ecology[J]. Mathematical Biosciences and Engineering, 2012, 9(1): 27-60. doi: 10.3934/mbe.2012.9.27

    Related Papers:

  • In this article we compare and contrast the predictions of some spatially explicit and implicit models in the context of a thought problem at the interface of spatial and landscape ecology. The situation we envision is a one-dimensional spatial universe of infinite extent in which there are two disjoint focal patches of a habitat type that is favorable to some specified species. We assume that neither patch is large enough by itself to sustain the species in question indefinitely, but that a single patch of size equal to the combined sizes of the two focal patches provides enough contiguous favorable habitat to sustain the given species indefinitely. When the two patches are separated by a patch of unfavorable matrix habitat, the natural expectation is that the species should persist indefinitely if the two patches are close enough to each other but should go extinct over time when the patches are far enough apart. Our focus here is to examine how different mathematical regimes may be employed to model this situation, with an eye toward exploring the trade-off between the mathematical tractability of the model on one hand and the suitability of its predictions on the other. In particular, we are interested in seeing how precisely the predictions of mathematically rich spatially explicit regimes (reaction-diffusion models, integro-difference models) can be matched by those of ostensibly mathematically simpler spatially implicit patch approximations (discrete-diffusion models, average dispersal success matrix models).


    加载中
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1632) PDF downloads(446) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog