Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Qualitative analysis of a model for co-culture of bacteria and amoebae

1. Center for Information Technology, Bruno Kessler Foundation, via Sommarive 18, I-38123 Trento Povo
2. Institut de Mathématiques de Bordeaux, UMR CNRS 5251 - Case 36, Université Victor Segalen Bordeaux 2, 3ter place de la Victoire 33076 Bordeaux Cedex
3. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240

In this article we analyze a mathematical model presented in [11]. The model consists of two scalar ordinary differential equations, which describe the interaction between bacteria and amoebae. We first give the sufficient conditions for the uniform persistence of the model, then we prove that the model can undergo Hopf bifurcation and Bogdanov-Takens bifurcation for some parameter values, respectively.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Bogdanov-Takens bifurcation; uniform persistence.; Hopf bifurcation; Population dynamics

Citation: Laura Fumanelli, Pierre Magal, Dongmei Xiao, Xiao Yu. Qualitative analysis of a model for co-culture of bacteria and amoebae. Mathematical Biosciences and Engineering, 2012, 9(2): 259-279. doi: 10.3934/mbe.2012.9.259

 

Reader Comments

your name: *   your email: *  

Copyright Info: 2012, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved