Mathematical Biosciences and Engineering, 2012, 9(2): 215-239. doi: 10.3934/mbe.2012.9.215.

Primary: 92D25; Secondary: 34C60.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates

1. Dept. Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1

We investigate the role of non shear stress and shear stressed based detachment rate functions for the longterm behavior of one-dimensional biofilm models. We find that the particular choice of a detachment rate function can affect the model prediction of persistence or washout of the biofilm. Moreover, by comparing biofilms in three settings: (i) Couette flow reactors, (ii) Poiseuille flow with fixed flow rate and (iii) Poiseuille flow with fixed pressure drop, we find that not only the bulk flow Reynolds number but also the particular mechanism driving the flow can play a crucial role for longterm behavior. We treat primarily the single species-case that can be analyzed with elementary ODE techniques. But we show also how the results, to some extent, can be carried over to multi-species biofilm models, and to biofilm models that are embedded in reactor mass balances.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Mathematical model; detachment.; biofilm

Citation: Fazal Abbas, Rangarajan Sudarsan, Hermann J. Eberl. Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Mathematical Biosciences and Engineering, 2012, 9(2): 215-239. doi: 10.3934/mbe.2012.9.215

 

This article has been cited by

  • 1. H. F. Winstanley, M. Chapwanya, A. C. Fowler, S. B. G. O’Brien, A 2D channel-clogging biofilm model, Journal of Mathematical Biology, 2015, 71, 3, 647, 10.1007/s00285-014-0833-4
  • 2. Alma Mašić, Hermann J. Eberl, A Modeling and Simulation Study of the Role of Suspended Microbial Populations in Nitrification in a Biofilm Reactor, Bulletin of Mathematical Biology, 2014, 76, 1, 27, 10.1007/s11538-013-9898-2
  • 3. M. R. Mattei, L. Frunzo, B. D’Acunto, Y. Pechaud, F. Pirozzi, G. Esposito, Continuum and discrete approach in modeling biofilm development and structure: a review, Journal of Mathematical Biology, 2018, 76, 4, 945, 10.1007/s00285-017-1165-y
  • 4. Alma Mašić, Hermann J. Eberl, On optimization of substrate removal in a bioreactor with wall attached and suspended bacteria, Mathematical Biosciences and Engineering, 2014, 11, 5, 1139, 10.3934/mbe.2014.11.1139
  • 5. HARRY J. GAEBLER, HERMANN J. EBERL, A simple model of biofilm growth in a porous medium that accounts for detachment and attachment of suspended biomass and their contribution to substrate degradation, European Journal of Applied Mathematics, 2018, 1, 10.1017/S0956792518000189
  • 6. Alma Mašić, Hermann J. Eberl, , Mathematical and Computational Approaches in Advancing Modern Science and Engineering, 2016, Chapter 25, 267, 10.1007/978-3-319-30379-6_25
  • 7. Katharine Z. Coyte, Hervé Tabuteau, Eamonn A. Gaffney, Kevin R. Foster, William M. Durham, Microbial competition in porous environments can select against rapid biofilm growth, Proceedings of the National Academy of Sciences, 2017, 114, 2, E161, 10.1073/pnas.1525228113
  • 8. Blessing O. Emerenini, Burkhard A. Hense, Christina Kuttler, Hermann J. Eberl, Christiane Forestier, A Mathematical Model of Quorum Sensing Induced Biofilm Detachment, PLOS ONE, 2015, 10, 7, e0132385, 10.1371/journal.pone.0132385
  • 9. Isaac Klapper, Productivity and Equilibrium in Simple Biofilm Models, Bulletin of Mathematical Biology, 2012, 74, 12, 2917, 10.1007/s11538-012-9791-4
  • 10. Berardino D’Acunto, Luigi Frunzo, Maria Rosaria Mattei, Moving boundary problem for the detachment in multispecies biofilms, Ricerche di Matematica, 2017, 10.1007/s11587-017-0333-0
  • 11. Hermann J. Eberl, Stefanie Sonner, Blessing O. Emerenini, Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects, Mathematical Biosciences and Engineering, 2016, 14, 3, 625, 10.3934/mbe.2017036
  • 12. B. D'ACUNTO, L. FRUNZO, V. LUONGO, M. R. MATTEI, Invasion moving boundary problem for a biofilm reactor model, European Journal of Applied Mathematics, 2018, 29, 6, 1079, 10.1017/S0956792518000165
  • 13. Harry J. Gaebler, Hermann J. Eberl, , Recent Advances in Mathematical and Statistical Methods, 2018, Chapter 32, 351, 10.1007/978-3-319-99719-3_32
  • 14. Harald Horn, Susanne Lackner, , Productive Biofilms, 2014, Chapter 275, 53, 10.1007/10_2014_275
  • 15. B. D’Acunto, L. Frunzo, V. Luongo, M. R. Mattei, Free boundary approach for the attachment in the initial phase of multispecies biofilm growth, Zeitschrift für angewandte Mathematik und Physik, 2019, 70, 3, 10.1007/s00033-019-1134-y
  • 16. Alma Mašić, Hermann J. Eberl, Persistence in a Single Species CSTR Model with Suspended Flocs and Wall Attached Biofilms, Bulletin of Mathematical Biology, 2012, 74, 4, 1001, 10.1007/s11538-011-9707-8
  • 17. B. D’Acunto, L. Frunzo, V. Luongo, M. R. Mattei, , Introduction to Biofilm Engineering, 2019, 245, 10.1021/bk-2019-1323.ch012
  • 18. Berardino D’Acunto, Luigi Frunzo, Vincenzo Luongo, Maria Rosaria Mattei, Modeling Heavy Metal Sorption and Interaction in a Multispecies Biofilm, Mathematics, 2019, 7, 9, 781, 10.3390/math7090781

Reader Comments

your name: *   your email: *  

Copyright Info: 2012, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved