Mathematical Biosciences and Engineering, 2011, 8(4): 953-971. doi: 10.3934/mbe.2011.8.953.

Primary: 34D05, 34D23; Secondary: 92D25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Effects of spatial structure and diffusion on the performances of the chemostat

1. UMR INRA/SupAgro 'MISTEA' and EPI INRA/INRIA 'MODEMIC', 2, pl. Viala 34060, Montpellier
2. UMR Analyse des Systèmes et Biométrie, INRA, EPI INRA/INRIA 'MODEMIC', 2 pl. Viala 34060 Montpellier
3. UMR INRA/SupAgro/CIRAD/IRD 'Eco&Sols', 2, pl. Viala 34060, Montpellier

Given hydric capacity and nutrient flow of a chemostat-like system, we analyse the influence of a spatial structure on the output concentrations at steady-state. Three configurations are compared: perfectly-mixed, serial and parallel with diffusion rate. We show the existence of a threshold on the input concentration of nutrient for which the benefits of the serial and parallel configurations over the perfectly-mixed one are reversed. In addition, we show that the dependency of the output concentrations on the diffusion rate can be non-monotonic, and give precise conditions for the diffusion effect to be advantageous. The study encompasses dead-zone models.
  Figure/Table
  Supplementary
  Article Metrics

Keywords global stability.; Chemostat model; interconnection; diffusion

Citation: Ihab Haidar, Alain Rapaport, Frédéric Gérard. Effects of spatial structure and diffusion on the performances of the chemostat. Mathematical Biosciences and Engineering, 2011, 8(4): 953-971. doi: 10.3934/mbe.2011.8.953

 

This article has been cited by

  • 1. M.J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, J.-J. Godon, B. Moussa Boudjemaa, A. Rapaport, T. Sari, R. Arditi, C. Lobry, Perspectives in mathematical modelling for microbial ecology, Ecological Modelling, 2016, 321, 64, 10.1016/j.ecolmodel.2015.11.002
  • 2. ARNAUD DUCROT, STEN MADEC, SINGULARLY PERTURBED ELLIPTIC SYSTEM MODELING THE COMPETITIVE INTERACTIONS FOR A SINGLE RESOURCE, Mathematical Models and Methods in Applied Sciences, 2013, 23, 11, 1939, 10.1142/S021820251350022X
  • 3. Alain Rapaport, Ihab Haidar, Jérôme Harmand, Global dynamics of the buffered chemostat for a general class of response functions, Journal of Mathematical Biology, 2015, 71, 1, 69, 10.1007/s00285-014-0814-7
  • 4. Terence Bayen, Alain Rapaport, Matthieu Sebbah, Minimal Time Control of the Two Tanks Gradostat Model Under a Cascade Input Constraint, SIAM Journal on Control and Optimization, 2014, 52, 4, 2568, 10.1137/130950379
  • 5. J.-R. de Dreuzy, A. Rapaport, T. Babey, J. Harmand, Influence of porosity structures on mixing-induced reactivity at chemical equilibrium in mobile/immobile Multi-Rate Mass Transfer (MRMT) and Multiple INteracting Continua (MINC) models, Water Resources Research, 2013, 49, 12, 8511, 10.1002/2013WR013808
  • 6. A. Rapaport, I. Haidar, J. Harmand, The buffered chemostat with non-monotonic response functions, IFAC Proceedings Volumes, 2013, 46, 23, 181, 10.3182/20130904-3-FR-2041.00039
  • 7. Alain Rapaport, Some non-intuitive properties of simple extensions of the chemostat model, Ecological Complexity, 2018, 34, 111, 10.1016/j.ecocom.2017.02.003
  • 8. Gabriel Lagasquie, Sten Madec, Comparison of the global dynamics for two chemostat-like models: Random temporal variation versus spatial heterogeneity, Nonlinear Analysis: Hybrid Systems, 2020, 35, 100815, 10.1016/j.nahs.2019.100815

Reader Comments

your name: *   your email: *  

Copyright Info: 2011, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved