Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Stability analysis and application of a mathematical cholera model

1. School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067
2. Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529

In this paper, we conduct a dynamical analysis of the deterministic cholera model proposed in [9]. We study the stability of both the disease-free and endemic equilibria so as to explore the complex epidemic and endemic dynamics of the disease. We demonstrate a real-world application of this model by investigating the recent cholera outbreak in Zimbabwe. Meanwhile, we present numerical simulation results to verify the analytical predictions.
  Figure/Table
  Supplementary
  Article Metrics

Keywords cholera model.; Stability; equilibrium; dynamical system

Citation: Shu Liao, Jin Wang. Stability analysis and application of a mathematical cholera model. Mathematical Biosciences and Engineering, 2011, 8(3): 733-752. doi: 10.3934/mbe.2011.8.733

 

This article has been cited by

  • 1. Xueying Wang, Jin Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, Journal of Biological Dynamics, 2015, 9, sup1, 233, 10.1080/17513758.2014.974696
  • 2. O.C. Collins, K.S. Govinder, Incorporating heterogeneity into the transmission dynamics of a waterborne disease model, Journal of Theoretical Biology, 2014, 356, 133, 10.1016/j.jtbi.2014.04.022
  • 3. Jin Wang, Shu Liao, A generalized cholera model and epidemic–endemic analysis, Journal of Biological Dynamics, 2012, 6, 2, 568, 10.1080/17513758.2012.658089
  • 4. Xueying Wang, Drew Posny, Jin Wang, A reaction-convection-diffusion model for cholera spatial dynamics, Discrete and Continuous Dynamical Systems - Series B, 2016, 21, 8, 2785, 10.3934/dcdsb.2016073
  • 5. Jinliang Wang, Jiying Lang, Yuming Chen, Global threshold dynamics of an SVIR model with age-dependent infection and relapse, Journal of Biological Dynamics, 2017, 11, sup2, 427, 10.1080/17513758.2016.1226436
  • 6. Obiora Cornelius Collins, Kevin Jan Duffy, Optimal control of foliar disease dynamics for multiple maize varieties, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2018, 68, 5, 412, 10.1080/09064710.2017.1416156
  • 7. Obiora Cornelius Collins, Kevin Jan Duffy, Optimal control of maize foliar diseases using the plants population dynamics, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2016, 66, 1, 20, 10.1080/09064710.2015.1061588
  • 8. Xue-yong Zhou, Jing-an Cui, Threshold dynamics for a cholera epidemic model with periodic transmission rate, Applied Mathematical Modelling, 2013, 37, 5, 3093, 10.1016/j.apm.2012.07.044
  • 9. Shu Liao, Jin Wang, Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices, Chaos, Solitons & Fractals, 2012, 45, 7, 966, 10.1016/j.chaos.2012.03.009
  • 10. O. C. COLLINS, K. S. GOVINDER, STABILITY ANALYSIS AND OPTIMAL VACCINATION OF A WATERBORNE DISEASE MODEL WITH MULTIPLE WATER SOURCES, Natural Resource Modeling, 2016, 29, 3, 426, 10.1111/nrm.12095
  • 11. Li-Ming Cai, Chairat Modnak, Jin Wang, An age-structured model for cholera control with vaccination, Applied Mathematics and Computation, 2017, 299, 127, 10.1016/j.amc.2016.11.013
  • 12. Hao Wang, Jin Wang, Jinhuo Luo, Seasonal forcing and exponential threshold incidence in cholera dynamics, Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 6, 2261, 10.3934/dcdsb.2017095
  • 13. Drew Posny, Jin Wang, Modelling cholera in periodic environments, Journal of Biological Dynamics, 2014, 8, 1, 1, 10.1080/17513758.2014.896482
  • 14. Kazuo Yamazaki, Xueying Wang, Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model, Discrete and Continuous Dynamical Systems - Series B, 2016, 21, 4, 1297, 10.3934/dcdsb.2016.21.1297
  • 15. Prabir Panja, Shyamal Kumar Mondal, Joydev Chattopadhyay, Dynamics of cholera outbreak with bacteriophage and periodic rate of contact, International Journal of Dynamics and Control, 2016, 4, 3, 284, 10.1007/s40435-015-0196-8
  • 16. Yuanji Cheng, Jin Wang, Xiuxiang Yang, On the global stability of a generalized cholera epidemiological model, Journal of Biological Dynamics, 2012, 6, 2, 1088, 10.1080/17513758.2012.728635
  • 17. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes, Journal of Biological Dynamics, 2015, 9, 1, 73, 10.1080/17513758.2015.1006696
  • 18. Drew Posny, Jin Wang, Zindoga Mukandavire, Chairat Modnak, Analyzing transmission dynamics of cholera with public health interventions, Mathematical Biosciences, 2015, 264, 38, 10.1016/j.mbs.2015.03.006
  • 19. Chairat Modnak, Jin Wang, Optimal treatment strategy of an avian influenza model with latency, International Journal of Biomathematics, 2017, 10, 05, 1750066, 10.1142/S1793524517500668
  • 20. Obiora Cornelius Collins, Kevin Jan Duffy, Analysis and Optimal Control Intervention Strategies of a Waterborne Disease Model: A Realistic Case Study, Journal of Applied Mathematics, 2018, 2018, 1, 10.1155/2018/2528513
  • 21. Shu Liao, Weiming Yang, Cholera model incorporating media coverage with multiple delays, Mathematical Methods in the Applied Sciences, 2019, 42, 2, 419, 10.1002/mma.5175
  • 22. Kevin J. Duffy, Obiora C. Collins, Consumer-resource coexistence as a means of reducing infectious disease, Journal of Biological Dynamics, 2019, 13, 1, 177, 10.1080/17513758.2019.1577994
  • 23. Obiora Cornelius Collins, Thokozani Silas Simelane, Kevin Jan Duffy, Mathematical model showing how socioeconomic dynamics in African cities could widen or reduce inequality, African Journal of Science, Technology, Innovation and Development, 2019, 1, 10.1080/20421338.2019.1577029
  • 24. Xiaohong Tian, Rui Xu, Jiazhe Lin, Mathematical analysis of a cholera infection model with vaccination strategy, Applied Mathematics and Computation, 2019, 361, 517, 10.1016/j.amc.2019.05.055

Reader Comments

your name: *   your email: *  

Copyright Info: 2011, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved