Mathematical Biosciences and Engineering, 2011, 8(3): 659-676. doi: 10.3934/mbe.2011.8.659.

Primary: 35K57, 35B35, 91A22; Secondary: 92D25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A note on the replicator equation with explicit space and global regulation

1. Applied Mathematics–1, Moscow State University of Railway Engineering, Obraztsova 9, Moscow, 127994

A replicator equation with explicit space and global regulation is considered. This model provides a natural framework to follow frequencies of species that are distributed in the space. For this model, analogues to classical notions of the Nash equilibrium and evolutionary stable state are provided. A sufficient condition for a uniform stationary state to be a spatially distributed evolutionary stable state is presented and illustrated with examples.
  Figure/Table
  Supplementary
  Article Metrics

Keywords evolutionary stable state; reaction-diffusion systems.; Nash equilibrium; Replicator equation

Citation: Alexander S. Bratus, Vladimir P. Posvyanskii, Artem S. Novozhilov. A note on the replicator equation with explicit space and global regulation. Mathematical Biosciences and Engineering, 2011, 8(3): 659-676. doi: 10.3934/mbe.2011.8.659

 

This article has been cited by

  • 1. A. S. Bratus, V. P. Posvyanskii, A. S. Novozhilov, A. Morozov, Replicator Equations and Space, Mathematical Modelling of Natural Phenomena, 2014, 9, 3, 47, 10.1051/mmnp/20149304
  • 2. Alexander S. Bratus, Vladimir P. Posvyanskii, Artem S. Novozhilov, Solutions with a bounded support promote permanence of a distributed replicator equation, Applicable Analysis, 2017, 96, 15, 2652, 10.1080/00036811.2016.1236921
  • 3. Alexander S. Bratus, Chin-Kun Hu, Mikhail V. Safro, Artem S. Novozhilov, On Diffusive Stability of Eigen’s Quasispecies Model, Journal of Dynamical and Control Systems, 2016, 22, 1, 1, 10.1007/s10883-014-9237-4
  • 4. O. Kuzenkov, E. Ryabova, A. Morozov, Variational Principle for Self-replicating Systems, Mathematical Modelling of Natural Phenomena, 2015, 10, 2, 115, 10.1051/mmnp/201510208
  • 5. T. S. Yakushkina, A distributed replicator system corresponding to a bimatrix game, Moscow University Computational Mathematics and Cybernetics, 2016, 40, 1, 19, 10.3103/S0278641916010064
  • 6. E. N. Pavlovich, A. S. Bratus’, Exclusion of dominated species in open replicator systems, Computational Mathematics and Modeling, 2013, 24, 1, 136, 10.1007/s10598-013-9165-2
  • 7. Наталья Константиновна Волосова, Natal'ya Konstantinovna Volosova, Александра Константиновна Волосова, Aleksandra Konstantinovna Volosova, Константин Александрович Волосов, Konstantin Aleksandrovich Volosov, Сергей Петрович Вакуленко, Sergei Petrovich Vakulenko, Графы задач для репликаторных уравнений и "трагедия исчерпания общего ресурса", Математическое моделирование, 2019, 31, 8, 101, 10.1134/S0234087919080069

Reader Comments

your name: *   your email: *  

Copyright Info: 2011, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved