Mathematical Biosciences and Engineering, 2011, 8(2): 355-369. doi: 10.3934/mbe.2011.8.355.

Primary: 49N35; Secondary: 49K15, 92C50.

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis

1. Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899
2. Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653
3. Dept. of Mathematics and Statistic, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653

We describe optimal protocols for a class of mathematical models for tumor anti-angiogenesis for the problem of minimizing the tumor volume with an a priori given amount of vessel disruptive agents. The family of models is based on a biologically validated model by Hahnfeldt et al. [9] and includes a modification by Ergun et al. [6], but also provides two new variations that interpolate the dynamics for the vascular support between these existing models. The biological reasoning for the modifications of the models will be presented and we will show that despite quite different modeling assumptions, the qualitative structure of optimal controls is robust. For all the systems in the class of models considered here, an optimal singular arc is the defining element and all the syntheses of optimal controlled trajectories are qualitatively equivalent with quantitative differences easily computed.
  Article Metrics

Keywords singular arcs; optimal control; Tumor anti-angiogenesis; synthesis.

Citation: Heinz Schättler, Urszula Ledzewicz, Benjamin Cardwell. Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Mathematical Biosciences and Engineering, 2011, 8(2): 355-369. doi: 10.3934/mbe.2011.8.355


This article has been cited by

  • 1. Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae, T model of growth and its application in systems of tumor-immune dynamics, Mathematical Biosciences and Engineering, 2013, 10, 3, 925, 10.3934/mbe.2013.10.925
  • 2. J. Leonel Rocha, Sandra M. Aleixo, An extension of Gompertzian growth dynamics: Weibull and Fréchet models, Mathematical Biosciences and Engineering, 2013, 10, 2, 379, 10.3934/mbe.2013.10.379
  • 3. Heinz Schättler, Urszula Ledzewicz, Behrooz Amini, Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, Journal of Mathematical Biology, 2016, 72, 5, 1255, 10.1007/s00285-015-0907-y
  • 4. U. Ledzewicz, H. Schättler, Multi-input Optimal Control Problems for Combined Tumor Anti-angiogenic and Radiotherapy Treatments, Journal of Optimization Theory and Applications, 2012, 153, 1, 195, 10.1007/s10957-011-9954-8
  • 5. Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo, Numerical solution for a problem arising in angiogenic signalling, AIMS Mathematics, 2019, 4, 1, 43, 10.3934/Math.2019.1.43
  • 6. Urszula Ledzewicz, Alberto d’Onofrio, Heinz Schättler, , Mathematical Methods and Models in Biomedicine, 2013, Chapter 11, 311, 10.1007/978-1-4614-4178-6_11
  • 7. Lance L. Munn, Christian Kunert, J. Alex Tyrrell, , Mathematical Methods and Models in Biomedicine, 2013, Chapter 5, 117, 10.1007/978-1-4614-4178-6_5
  • 8. Heinz Schättler, Urszula Ledzewicz, , Optimal Control for Mathematical Models of Cancer Therapies, 2015, Chapter 5, 171, 10.1007/978-1-4939-2972-6_5
  • 9. Urszula Ledzewicz, Heinz Schättler, , Mathematical Oncology 2013, 2014, Chapter 10, 295, 10.1007/978-1-4939-0458-7_10
  • 10. Heinz Schättler, Urszula Ledzewicz, , Analysis and Geometry in Control Theory and its Applications, 2015, Chapter 8, 209, 10.1007/978-3-319-06917-3_8
  • 11. Arjan W. Griffioen, Andrea Weiss, Robert H. Berndsen, U. Kulsoom Abdul, Marije T. te Winkel, Patrycja Nowak-Sliwinska, The emerging quest for the optimal angiostatic combination therapy, Biochemical Society Transactions, 2014, 42, 6, 1608, 10.1042/BST20140193

Reader Comments

your name: *   your email: *  

Copyright Info: 2011, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved