Mathematical Biosciences and Engineering, 2011, 8(2): 307-323. doi: 10.3934/mbe.2011.8.307.

Primary: 92C50; Secondary: 49K15, 49M99.

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy

1. Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653
2. Institut für Numerische und Angewandte Mathematik, Universität Münster, D-48149 Münster
3. Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899

We consider the problem of minimizing the tumor volume with a priori given amounts of anti-angiogenic and cytotoxic agents. For one underlying mathematical model, optimal and suboptimal solutions are given for four versions of this problem: the case when only anti-angiogenic agents are administered, combination treatment with a cytotoxic agent, and when a standard linear pharmacokinetic equation for the anti-angiogenic agent is added to each of these models. It is shown that the solutions to the more complex models naturally build upon the simplified versions. This gives credence to a modeling approach that starts with the analysis of simplified models and then adds increasingly more complex and medically relevant features. Furthermore, for each of the problem formulations considered here, there exist excellent simple piecewise constant controls with a small number of switchings that virtually replicate the optimal values for the objective.
  Article Metrics

Keywords Combination therapy; tumor anti-angiogenesis; optimal and suboptimal controls.

Citation: Urszula Ledzewicz, Helmut Maurer, Heinz Schättler. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Mathematical Biosciences and Engineering, 2011, 8(2): 307-323. doi: 10.3934/mbe.2011.8.307


This article has been cited by

  • 1. Rebecca H. Chisholm, Tommaso Lorenzi, Jean Clairambault, Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation, Biochimica et Biophysica Acta (BBA) - General Subjects, 2016, 1860, 11, 2627, 10.1016/j.bbagen.2016.06.009
  • 2. Delfim Torres, Cristiana Silva, Optimal control strategies for tuberculosis treatment: A case study in Angola, Numerical Algebra, Control and Optimization, 2012, 2, 3, 601, 10.3934/naco.2012.2.601
  • 3. Jerzy Klamka, Helmut Maurer, Andrzej Swierniak, Local controllability and optimal control for a model of combined anticancer therapy with control delays, Mathematical Biosciences and Engineering, 2016, 14, 1, 195, 10.3934/mbe.2017013
  • 4. Z. Foroozandeh, M. Shamsi, Maria Do Rosário De Pinho, A Hybrid Direct–Indirect Approach for Solving the Singular Optimal Control Problems of Finite and Infinite Order, Iranian Journal of Science and Technology, Transactions A: Science, 2017, 10.1007/s40995-017-0176-2
  • 5. Valeriya Lykina, , Large-Scale Scientific Computing, 2018, Chapter 24, 228, 10.1007/978-3-319-73441-5_24
  • 6. Costanza Simoncini, Krzysztof Jurczuk, Daniel Reska, Simon Esneault, Jean-Claude Nunes, Jean-Jacques Bellanger, Hervé Saint-Jalmes, Yan Rolland, Pierre-Antoine Eliat, Johanne Bézy-Wendling, Marek Kretowski, Towards a patient-specific hepatic arterial modeling for microspheres distribution optimization in SIRT protocol, Medical & Biological Engineering & Computing, 2018, 56, 3, 515, 10.1007/s11517-017-1703-1
  • 7. Frédérique Billy, Jean Clairambault, Designing proliferating cell population models with functional targets for control by anti-cancer drugs, Discrete and Continuous Dynamical Systems - Series B, 2013, 18, 4, 865, 10.3934/dcdsb.2013.18.865
  • 8. Katerina D. Argyri, Dimitra D. Dionysiou, Fay D. Misichroni, Georgios S. Stamatakos, Numerical simulation of vascular tumour growth under antiangiogenic treatment: addressing the paradigm of single-agent bevacizumab therapy with the use of experimental data, Biology Direct, 2016, 11, 1, 10.1186/s13062-016-0114-9
  • 9. Bei Cheng, Feng Gao, Erica Maissy, Peisheng Xu, Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles, Acta Biomaterialia, 2018, 10.1016/j.actbio.2018.12.010
  • 10. F.A. Rihan, S. Lakshmanan, H. Maurer, Optimal control of tumour-immune model with time-delay and immuno-chemotherapy, Applied Mathematics and Computation, 2019, 353, 147, 10.1016/j.amc.2019.02.002
  • 11. Frédérique Billy, Jean Clairambault, Olivier Fercoq, , Mathematical Methods and Models in Biomedicine, 2013, Chapter 10, 265, 10.1007/978-1-4614-4178-6_10

Reader Comments

your name: *   your email: *  

Copyright Info: 2011, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved