Mathematical Biosciences and Engineering, 2010, 7(3): 657-673. doi: 10.3934/mbe.2010.7.657.

Primary: 92D30, 92D40; Secondary: 92D25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Alternative transmission modes for Trypanosoma cruzi

1. Mathematics Department, University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408

   

The parasite Trypanosoma cruzi, which causes Chagas' disease, is typically transmitted through a cycle in which vectors become infected through bloodmeals on infected hosts and then infect other hosts through defecation at the sites of subsequent feedings. The vectors native to the southeastern United States, however, are inefficient at transmitting T. cruzi in this way, which suggests that alternative transmission modes may be responsible for maintaining the established sylvatic infection cycle. Vertical and oral transmission of sylvatic hosts, as well as differential behavior of infected vectors, have been observed anecdotally. This study develops a model which accounts for these alternative modes of transmission, and applies it to transmission between raccoons and the vector Triatoma sanguisuga. Analysis of the system of nonlinear differential equations focuses on endemic prevalence levels and on the infection's basic reproductive number, whose form may account for how a combination of traditionally secondary infection routes can maintain the transmission cycle when the usual primary route becomes ineffective.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Trypanosoma cruzi; oral infection; vector infection.; Chagas; vertical infection

Citation: Christopher M. Kribs-Zaleta. Alternative transmission modes for Trypanosoma cruzi . Mathematical Biosciences and Engineering, 2010, 7(3): 657-673. doi: 10.3934/mbe.2010.7.657

 

This article has been cited by

  • 1. Christopher M. Kribs-Zaleta, Anuj Mubayi, The role of adaptations in two-strain competition for sylvaticTrypanosoma cruzitransmission, Journal of Biological Dynamics, 2012, 6, 2, 813, 10.1080/17513758.2012.710339
  • 2. Christopher M. Kribs, Christopher Mitchell, Host switching vs. host sharing in overlapping sylvaticTrypanosoma cruzitransmission cycles, Journal of Biological Dynamics, 2015, 9, 1, 247, 10.1080/17513758.2015.1075611
  • 3. Juan M. Cordovez, Lina Maria Rendon, Camila Gonzalez, Felipe Guhl, Using the basic reproduction number to assess the effects of climate change in the risk of Chagas disease transmission in Colombia, Acta Tropica, 2014, 129, 74, 10.1016/j.actatropica.2013.10.003
  • 4. Pierre Nouvellet, Zulma M. Cucunubá, Sébastien Gourbière, , Mathematical Models for Neglected Tropical Diseases: Essential Tools for Control and Elimination, Part A, 2015, 135, 10.1016/bs.apar.2014.12.004
  • 5. Christopher Kribs-Zaleta, Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions, Mathematical Biosciences and Engineering, 2013, 10, 5/6, 1587, 10.3934/mbe.2013.10.1587
  • 6. Manuel Sánchez-Moreno, Enrique Alvarez-Manzaneda, Ramón Gutierrez-Sánchez, Inmaculada Ramírez-Macías, María José Rosales, Rachid Chahboun, Francisco Olmo, Clotilde Marín, Ibtissam Messouri, In Vitro and In Vivo Studies of the Trypanocidal Activity of Four Terpenoid Derivatives against Trypanosoma cruzi, The American Journal of Tropical Medicine and Hygiene, 2012, 87, 3, 481, 10.4269/ajtmh.2012.11-0471
  • 7. Daniel J. Coffield, Anna Maria Spagnuolo, Meir Shillor, Ensela Mema, Bruce Pell, Amanda Pruzinsky, Alexandra Zetye, Herbert B. Tanowitz, A Model for Chagas Disease with Oral and Congenital Transmission, PLoS ONE, 2013, 8, 6, e67267, 10.1371/journal.pone.0067267
  • 8. Christopher M. Kribs-Zaleta, Graphical analysis of evolutionary trade-off in sylvatic Trypanosoma cruzi transmission modes, Journal of Theoretical Biology, 2014, 353, 34, 10.1016/j.jtbi.2014.03.002
  • 9. Juan M. Cordovez, Camilo Sanabria, Environmental Changes Can Produce Shifts in Chagas Disease Infection Risk, Environmental Health Insights, 2014, 8s2, EHI.S16002, 10.4137/EHI.S16002
  • 10. Britnee Crawford, Christopher Kribs-Zaleta, A metapopulation model for sylvatic T. cruzi transmission with vector migration, Mathematical Biosciences and Engineering, 2014, 11, 3, 471, 10.3934/mbe.2014.11.471
  • 11. Massimo Stella, Cecilia S. Andreazzi, Sanja Selakovic, Alireza Goudarzi, Alberto Antonioni, Parasite spreading in spatial ecological multiplex networks, Journal of Complex Networks, 2016, cnw028, 10.1093/comnet/cnw028
  • 12. Perrine Pelosse, Christopher M. Kribs-Zaleta, The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi, Journal of Theoretical Biology, 2012, 312, 133, 10.1016/j.jtbi.2012.07.028
  • 13. Leidi Herrera, Trypanosoma cruzi, the Causal Agent of Chagas Disease: Boundaries between Wild and Domestic Cycles in Venezuela, Frontiers in Public Health, 2014, 2, 10.3389/fpubh.2014.00259
  • 14. Kamuela E. Yong, Anuj Mubayi, Christopher M. Kribs, Agent-based mathematical modeling as a tool for estimating Trypanosoma cruzi vector–host contact rates, Acta Tropica, 2015, 151, 21, 10.1016/j.actatropica.2015.06.025
  • 15. F. O. R. OLIVEIRA-JR, C. R. ALVES, F. S. SILVA, L. M. C. CÔRTES, L. TOMA, R. I. BOUÇAS, T. AGUILAR, H. B. NADER, M. C. S. PEREIRA, Trypanosoma cruzi heparin-binding proteins present a flagellar membrane localization and serine proteinase activity, Parasitology, 2013, 140, 02, 171, 10.1017/S0031182012001448
  • 16. Bruce Y. Lee, Sarah M. Bartsch, Laura Skrip, Daniel L. Hertenstein, Cameron M. Avelis, Martial Ndeffo-Mbah, Carla Tilchin, Eric O. Dumonteil, Alison Galvani, Ricardo E. Gürtler, Are the London Declaration’s 2020 goals sufficient to control Chagas disease?: Modeling scenarios for the Yucatan Peninsula, PLOS Neglected Tropical Diseases, 2018, 12, 3, e0006337, 10.1371/journal.pntd.0006337
  • 17. A.M. Jansen, A.L.R. Roque, S.C.C. Xavier, , American Trypanosomiasis Chagas Disease, 2017, 265, 10.1016/B978-0-12-801029-7.00012-5
  • 18. Manuel Adrian Acuña-Zegarra, Daniel Olmos-Liceaga, Jorge X. Velasco-Hernández, The role of animal grazing in the spread of Chagas disease, Journal of Theoretical Biology, 2018, 10.1016/j.jtbi.2018.08.025
  • 19. Anuj Mubayi, Christopher Kribs, Viswanathan Arunachalam, Carlos Castillo-Chavez, , , 2019, 10.1016/bs.host.2018.11.001

Reader Comments

your name: *   your email: *  

Copyright Info: 2010, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved