On the interaction between the immune system and an exponentially replicating pathogen

  • Received: 01 July 2009 Accepted: 29 June 2018 Published: 01 June 2010
  • MSC : Primary: 92D30; Secondary: 34D23, 34C15.

  • In this work, we generalize the Pugliese-Gandolfi Model [A. Pugliese and A. Gandolfi, Math Biosc, 214,73 (2008)] of interaction between an exponentially replicating pathogen and the immune system. After the generalization, we study the properties of boundedness and unboundedness of the solutions, and we also give a condition for the global eradication as well as for the onset of sustained oscillations. Then, we study the condition for the uniqueness of the arising limit cycle, with numerical applications to the Pugliese-Gandolfi model. By means of simulations, we also show some alternative ways to reaching the elimination of the pathogen and interesting effects linked to variations in aspecific immune response. After shortly studying some pathological cases of interest, we include in our model distributed and constant delays and we show that also delays may unstabilize the equilibria.

    Citation: Alberto d'Onofrio. On the interaction between the immune system and an exponentially replicating pathogen[J]. Mathematical Biosciences and Engineering, 2010, 7(3): 579-602. doi: 10.3934/mbe.2010.7.579

    Related Papers:

  • In this work, we generalize the Pugliese-Gandolfi Model [A. Pugliese and A. Gandolfi, Math Biosc, 214,73 (2008)] of interaction between an exponentially replicating pathogen and the immune system. After the generalization, we study the properties of boundedness and unboundedness of the solutions, and we also give a condition for the global eradication as well as for the onset of sustained oscillations. Then, we study the condition for the uniqueness of the arising limit cycle, with numerical applications to the Pugliese-Gandolfi model. By means of simulations, we also show some alternative ways to reaching the elimination of the pathogen and interesting effects linked to variations in aspecific immune response. After shortly studying some pathological cases of interest, we include in our model distributed and constant delays and we show that also delays may unstabilize the equilibria.


    加载中
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1479) PDF downloads(455) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog