Mathematical Biosciences and Engineering, 2010, 7(1): 195-211. doi: 10.3934/mbe.2010.7.195.

Primary: 37N25, 34C25; Secondary: 37M99, 37B25.

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Models for the spread and persistence of hantavirus infection in rodents with direct and indirect transmission

1. Louisiana State University in Shreveport, Department of Mathematics, Shreveport, LA 71115
2. Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042
3. Université Victor Segalen Bordeaux 2, IMB UMR CNRS 5251 & INRIA Bordeaux Sud Ouest projet Anubis, case 36, UFR Sciences et Modelisation, 3 ter place de la Victoire, 33076 Bordeaux Cedex

Hantavirus, a zoonotic disease carried by wild rodents, is spread among rodents via direct contact and indirectly via infected rodent excreta in the soil. Spillover to humans is primarily via the indirect route through inhalation of aerosolized viral particles. Rodent-hantavirus models that include direct and indirect transmission and periodically varying demographic and epidemiological parameters are studied in this investigation. Two models are analyzed, a nonautonomous system of differential equations with time-periodic coefficients and an autonomous system, where the coefficients are taken to be the time-average. In the nonautonomous system, births, deaths, transmission rates and viral decay rates are assumed to be periodic. For both models, the basic reproduction numbers are calculated. The models are applied to two rodent populations, reservoirs for a New World and for an Old World hantavirus. The numerical examples show that periodically varying demographic and epidemiological parameters may substantially increase the basic reproduction number. Also, large variations in the viral decay rate in the environment coupled with an outbreak in rodent populations may lead to spillover infection in humans.
  Article Metrics

Keywords periodic solutions.; nonautonomous; hantavirus; basic reproduction number

Citation: Curtis L. Wesley, Linda J. S. Allen, Michel Langlais. Models for the spread and persistence of hantavirus infection in rodents with direct and indirect transmission. Mathematical Biosciences and Engineering, 2010, 7(1): 195-211. doi: 10.3934/mbe.2010.7.195


This article has been cited by

  • 1. Yicang Zhou, Zhenguo Bai, Addendum, Discrete and Continuous Dynamical Systems - Series B, 2011, 15, 3, 915, 10.3934/dcdsb.2011.15.915
  • 2. Verónica Anaya, Mostafa Bendahmane, Michel Langlais, Mauricio Sepúlveda, A convergent finite volume method for a model of indirectly transmitted diseases with nonlocal cross-diffusion, Computers & Mathematics with Applications, 2015, 70, 2, 132, 10.1016/j.camwa.2015.04.021
  • 3. Cong Jin, Dexin Li, , Human Emerging and Re-emerging Infections, 2015, 43, 10.1002/9781118644843.ch3
  • 4. Dionysios Christos Watson, Maria Sargianou, Anna Papa, Paraskevi Chra, Ioannis Starakis, George Panos, Epidemiology of Hantavirus infections in humans: A comprehensive, global overview, Critical Reviews in Microbiology, 2014, 40, 3, 261, 10.3109/1040841X.2013.783555
  • 5. Hyun Mo Yang, The basic reproduction number obtained from Jacobian and next generation matrices – A case study of dengue transmission modelling, Biosystems, 2014, 126, 52, 10.1016/j.biosystems.2014.10.002
  • 6. Jie Lou, Yijun Lou, Jianhong Wu, Threshold virus dynamics with impulsive antiretroviral drug effects, Journal of Mathematical Biology, 2012, 65, 4, 623, 10.1007/s00285-011-0474-9
  • 7. Maia Martcheva, Xue-Zhi Li, Competitive exclusion in an infection-age structured model with environmental transmission, Journal of Mathematical Analysis and Applications, 2013, 408, 1, 225, 10.1016/j.jmaa.2013.05.064
  • 8. S. Madec, C. Wolf, A multi-structured epidemic problem with direct and indirect transmission in heterogeneous environments, Journal of Biological Dynamics, 2012, 6, 2, 235, 10.1080/17513758.2011.553392
  • 9. Nicolas Bacaër, El Hadi Ait Dads, On the biological interpretation of a definition for the parameter R 0 in periodic population models, Journal of Mathematical Biology, 2012, 65, 4, 601, 10.1007/s00285-011-0479-4
  • 10. L. J. S. ALLEN, V. L. BROWN, C. B. JONSSON, S. L. KLEIN, S. M. LAVERTY, K. MAGWEDERE, J. C. OWEN, P. VAN DEN DRIESSCHE, MATHEMATICAL MODELING OF VIRAL ZOONOSES IN WILDLIFE, Natural Resource Modeling, 2012, 25, 1, 5, 10.1111/j.1939-7445.2011.00104.x
  • 11. Wei Ye, Yongni Xu, Yuan Wang, Yangchao Dong, Qianqian Xi, Mengyuan Cao, Lan Yu, Liang Zhang, Linfeng Cheng, Xingan Wu, Zhikai Xu, Yingfeng Lei, Fanglin Zhang, Hantaan virus can infect human keratinocytes and activate an interferon response through the nuclear translocation of IRF-3, Infection, Genetics and Evolution, 2015, 29, 146, 10.1016/j.meegid.2014.11.009
  • 12. Colleen B. Jonsson, Luiz Tadeu Moraes Figueiredo, Olli Vapalahti, A Global Perspective on Hantavirus Ecology, Epidemiology, and Disease, Clinical Microbiology Reviews, 2010, 23, 2, 412, 10.1128/CMR.00062-09
  • 13. Jonas Reijniers, Katrien Tersago, Benny Borremans, Nienke Hartemink, Liina Voutilainen, Heikki Henttonen, Herwig Leirs, Why Hantavirus Prevalence Does Not Always Increase With Host Density: Modeling the Role of Host Spatial Behavior and Maternal Antibodies, Frontiers in Cellular and Infection Microbiology, 2020, 10, 10.3389/fcimb.2020.536660

Reader Comments

your name: *   your email: *  

Copyright Info: 2010, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved