Primary: 34K20, 92C50; Secondary: 92D25.

Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected epithelial cells

1. Applied Sciences and Mathematics Department, Arizona State University at the Polytechnic campus, Mesa, Arizona, 85212
2. School of Mathematics and Statistical Sciences, Arizona State University, Tempe, AZ 85281

## Abstract    Related pages

The aim of this work is to investigate the mechanisms involved in the clearance of viral infection of the influenza virus at the epithelium level by modeling and analyzing the interaction of the influenza virus specific cytotoxic T Lymphocytes (CTL cells) and the influenza virus infected epithelial cells. Since detailed and definite mechanisms that trigger CTL production and cell death are still debatable, we utilize two plausible mathematical models for the CTLs response to influenza infection (i) logistic growth and (ii) threshold growth. These models incorporate the simulating effect of the production of CTLs during the infection. The systematical analysis of these models show that the behaviors of the models are similar when CTL density is high and in which case both generate reasonable dynamics. However, both models failed to produce the desirable and natural clearance dynamic. Nevertheless, at lower CTL density, the threshold model shows the possibility of existence of a "lower" equilibrium. This sub-threshold equilibrium may represent dose-dependent immune response to low level infection.
Figure/Table
Supplementary
Article Metrics

Citation: Abdessamad Tridane, Yang Kuang. Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected epithelial cells. Mathematical Biosciences and Engineering, 2010, 7(1): 171-185. doi: 10.3934/mbe.2010.7.171

• 1. Khalid Hattaf, Noura Yousfi, Abdessamad Tridane, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Analysis: Real World Applications, 2012, 13, 4, 1866, 10.1016/j.nonrwa.2011.12.015
• 2. Alessandro Boianelli, Van Nguyen, Thomas Ebensen, Kai Schulze, Esther Wilk, Niharika Sharma, Sabine Stegemann-Koniszewski, Dunja Bruder, Franklin Toapanta, Carlos Guzmán, Michael Meyer-Hermann, Esteban Hernandez-Vargas, Modeling Influenza Virus Infection: A Roadmap for Influenza Research, Viruses, 2015, 7, 10, 5274, 10.3390/v7102875
• 3. Christoforos Hadjichrysanthou, Emilie Cauët, Emma Lawrence, Carolin Vegvari, Frank de Wolf, Roy M. Anderson, Understanding the within-host dynamics of influenza A virus: from theory to clinical implications, Journal of The Royal Society Interface, 2016, 13, 119, 20160289, 10.1098/rsif.2016.0289
• 4. Ian Price, Ericka D. Mochan-Keef, David Swigon, G. Bard Ermentrout, Sarah Lukens, Franklin R. Toapanta, Ted M. Ross, Gilles Clermont, The inflammatory response to influenza A virus (H1N1): An experimental and mathematical study, Journal of Theoretical Biology, 2015, 374, 83, 10.1016/j.jtbi.2015.03.017
• 5. Amber M. Smith, Alan S. Perelson, Influenza A virus infection kinetics: quantitative data and models, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 4, 429, 10.1002/wsbm.129
• 6. G. Neofytou, Y.N. Kyrychko, K.B. Blyuss, Mathematical model of plant-virus interactions mediated by RNA interference, Journal of Theoretical Biology, 2016, 403, 129, 10.1016/j.jtbi.2016.05.018
• 7. Laetitia Canini, Alan S. Perelson, Viral kinetic modeling: state of the art, Journal of Pharmacokinetics and Pharmacodynamics, 2014, 41, 5, 431, 10.1007/s10928-014-9363-3
• 8. F. Crauste, E. Terry, I. Le Mercier, J. Mafille, S. Djebali, T. Andrieu, B. Mercier, G. Kaneko, C. Arpin, J. Marvel, O. Gandrillon, Predicting pathogen-specific CD8 T cell immune responses from a modeling approach, Journal of Theoretical Biology, 2015, 374, 66, 10.1016/j.jtbi.2015.03.033
• 9. Alessandro Boianelli, Niharika Sharma-Chawla, Dunja Bruder, Esteban A. Hernandez-Vargas, Oseltamivir PK/PD Modeling and Simulation to Evaluate Treatment Strategies against Influenza-Pneumococcus Coinfection, Frontiers in Cellular and Infection Microbiology, 2016, 6, 10.3389/fcimb.2016.00060
• 10. Hana M. Dobrovolny, Micaela B. Reddy, Mohamed A. Kamal, Craig R. Rayner, Catherine A. A. Beauchemin, Andrew J. Yates, Assessing Mathematical Models of Influenza Infections Using Features of the Immune Response, PLoS ONE, 2013, 8, 2, e57088, 10.1371/journal.pone.0057088
• 11. N. A. Petukhova, Epithelial dysfunction associated with pyo-inflammatory diseases of the ENT organs, Vestnik otorinolaringologii, 2017, 82, 5, 64, 10.17116/otorino201782564-70
• 12. , , Modeling and Control of Infectious Diseases in the Host, 2019, 65, 10.1016/B978-0-12-813052-0.00015-4
• 13. , , Modeling and Control of Infectious Diseases in the Host, 2019, 221, 10.1016/B978-0-12-813052-0.00023-3
• 14. Zhiwei Ji, Weiling Zhao, Hui-Kuan Lin, Xiaobo Zhou, Stacey Finley, Systematically understanding the immunity leading to CRPC progression, PLOS Computational Biology, 2019, 15, 9, e1007344, 10.1371/journal.pcbi.1007344