Mathematical Biosciences and Engineering, 2008, 5(4): 691-711. doi: 10.3934/mbe.2008.5.691.

Primary: 68T05, Secondary: 92D40

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Artificial neural networks and remote sensing in the analysis of the highly variable Pampean shallow lakes

1. Multidisciplinary Institute on Ecosystems and Sustainable Development, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, 7000 Tandil

Suspended organic and inorganic particles, resulting from the interactions among biological, physical, and chemical variables, modify the optical properties of water bodies and condition the trophic chain. The analysis of their optic properties through the spectral signatures obtained from satellite images allows us to infer the trophic state of the shallow lakes and generate a real time tool for studying the dynamics of shallow lakes. Field data (chlorophyll-a, total solids, and Secchi disk depth) allow us to define levels of turbidity and to characterize the shallow lakes under study. Using bands 2 and 4 of LandSat 5 TM and LandSat 7 ETM+ images and constructing adequate artificial neural network models (ANN), a classification of shallow lakes according to their turbidity is obtained. ANN models are also used to determine chlorophyll-a and total suspended solids concentrations from satellite image data. The results are statistically significant. The integration of field and remote sensors data makes it possible to retrieve information on shallow lake systems at broad spatial and temporal scales. This is necessary to understanding the mechanisms that affect the trophic structure of these ecosystems.
  Article Metrics

Keywords artificial neural network; remote sensing; eutrophic shallow lakes

Citation: Graciela Canziani, Rosana Ferrati, Claudia Marinelli, Federico Dukatz. Artificial neural networks and remote sensing in the analysis of the highly variable Pampean shallow lakes. Mathematical Biosciences and Engineering, 2008, 5(4): 691-711. doi: 10.3934/mbe.2008.5.691


This article has been cited by

  • 1. Vanesa Y. Bohn, Ana L. Delgado, M. Cintia Piccolo, Gerardo M. E. Perillo, Assessment of climate variability and land use effect on shallow lakes in temperate plains of Argentina, Environmental Earth Sciences, 2016, 75, 9, 10.1007/s12665-016-5569-6
  • 2. Prima Kadavi, Won-Jin Lee, Chang-Wook Lee, Analysis of the Pyroclastic Flow Deposits of Mount Sinabung and Merapi Using Landsat Imagery and the Artificial Neural Networks Approach, Applied Sciences, 2017, 7, 9, 935, 10.3390/app7090935
  • 3. Katalin Blix, Torbjørn Eltoft, Machine Learning Automatic Model Selection Algorithm for Oceanic Chlorophyll-a Content Retrieval, Remote Sensing, 2018, 10, 5, 775, 10.3390/rs10050775
  • 4. Victoria S. Fusé, M. Eugenia Priano, Karen E. Williams, José I. Gere, Sergio A. Guzmán, Roberto Gratton, M. Paula Juliarena, Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods, Environmental Monitoring and Assessment, 2016, 188, 10, 10.1007/s10661-016-5601-z
  • 5. SARIAN KOSTEN, MARTINE VERNOOIJ, EGBERT H. VAN NES, MARÍA DE LOS Á. G. SAGRARIO, JAN G. P. W. CLEVERS, MARTEN SCHEFFER, Bimodal transparency as an indicator for alternative states in South American lakes, Freshwater Biology, 2012, 57, 6, 1191, 10.1111/j.1365-2427.2012.02785.x
  • 6. Evangelos Spyrakos, Ruth O'Donnell, Peter D. Hunter, Claire Miller, Marian Scott, Stefan G. H. Simis, Claire Neil, Claudio C. F. Barbosa, Caren E. Binding, Shane Bradt, Mariano Bresciani, Giorgio Dall'Olmo, Claudia Giardino, Anatoly A. Gitelson, Tiit Kutser, Lin Li, Bunkei Matsushita, Victor Martinez-Vicente, Mark W. Matthews, Igor Ogashawara, Antonio Ruiz-Verdú, John F. Schalles, Emma Tebbs, Yunlin Zhang, Andrew N. Tyler, Optical types of inland and coastal waters, Limnology and Oceanography, 2018, 63, 2, 846, 10.1002/lno.10674
  • 7. Juan Manuel Núñez, Sandra Medina, Gerardo Ávila, Jorge Montejano, , Satellite Information Classification and Interpretation [Working Title], 2019, 10.5772/intechopen.82729
  • 8. Aboul Ella Hassanien, Ashraf Darwish, Sara Abdelghafar, Machine learning in telemetry data mining of space mission: basics, challenging and future directions, Artificial Intelligence Review, 2019, 10.1007/s10462-019-09760-1

Reader Comments

your name: *   your email: *  

Copyright Info: 2008, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved