Mathematical Biosciences and Engineering, 2008, 5(1): 125-144. doi: 10.3934/mbe.2008.5.125.

Primary: 68U10; Secondary: 92C55, 62P10, 94A08.

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Multiscale deformable registration of noisy medical images

1. Department of Mathematics, Kenyon College, Gambier, OH 43022-9623
2. Department of Mathematics and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742
3. Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5947

Multiscale image registration techniques are presented for the reg- istration of medical images using deformable registration models. The tech- niques are particularly effective for registration problems in which one or both of the images to be registered contains significant levels of noise. A brief overview of existing deformable registration techniques is presented, and exper- iments using B-spline free-form deformation registration models demonstrate that ordinary deformable registration techniques fail to produce accurate re- sults in the presence of significant levels of noise. The hierarchical multiscale image decomposition described in E. Tadmor, S. Nezzar, and L. Vese's, ''A multiscale image representation using hierarchical (BV,L2) decompositions'' (Multiscale Modeling and Simulations, 2 (2004): 4, pp. 554-579) is reviewed, and multiscale image registration algorithms are developed based on the mul- tiscale decomposition. Accurate registration of noisy images is achieved by obtaining a hierarchical multiscale decomposition of the images and iteratively registering the resulting components. This approach enables a successful reg- istration of images that contain noise levels well beyond the level at which ordinary deformable registration fails. Numerous image registration experi- ments demonstrate the accuracy and efficiency of the multiscale registration techniques.
  Article Metrics

Keywords multiscale analysis; CT; noise.; deformable image registration

Citation: Dana Paquin, Doron Levy, Lei Xing. Multiscale deformable registration of noisy medical images. Mathematical Biosciences and Engineering, 2008, 5(1): 125-144. doi: 10.3934/mbe.2008.5.125


This article has been cited by

  • 1. Yunzhi Ma, Louis Lee, O. Keshet, Paul Keall, Lei Xing, Four-dimensional inverse treatment planning with inclusion of implanted fiducials in IMRT segmented fields, Medical Physics, 2009, 36, 6Part1, 2215, 10.1118/1.3121425
  • 2. Hendrik Teske, Kathrin Bartelheimer, Jan Meis, Rolf Bendl, Eva M Stoiber, Kristina Giske, Construction of a biomechanical head and neck motion model as a guide to evaluation of deformable image registration, Physics in Medicine and Biology, 2017, 62, 12, N271, 10.1088/1361-6560/aa69b6
  • 3. Ming Chao, Yaoqin Xie, Lei Xing, Auto-propagation of contours for adaptive prostate radiation therapy, Physics in Medicine and Biology, 2008, 53, 17, 4533, 10.1088/0031-9155/53/17/005
  • 4. Yaoqin Xie, Ming Chao, Percy Lee, Lei Xing, Feature-based rectal contour propagation from planning CT to cone beam CT, Medical Physics, 2008, 35, 10, 4450, 10.1118/1.2975230
  • 5. Rozhin Penjweini, Michele M. Kim, Timothy C. Zhu, Three-dimensional finite-element based deformable image registration for evaluation of pleural cavity irradiation during photodynamic therapy, Medical Physics, 2017, 44, 7, 3767, 10.1002/mp.12284
  • 6. Eduard Schreibmann, Paul Pantalone, Anthony Waller, Tim Fox, A measure to evaluate deformable registration fields in clinical settings, Journal of Applied Clinical Medical Physics, 2012, 13, 5, 126, 10.1120/jacmp.v13i5.3829
  • 7. Dana Paquin, Doron Levy, Lei Xing, Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy, Medical Physics, 2008, 36, 1, 4, 10.1118/1.3026602
  • 8. Yaoqin Xie, Ming Chao, Lei Xing, Tissue Feature-Based and Segmented Deformable Image Registration for Improved Modeling of Shear Movement of Lungs, International Journal of Radiation Oncology*Biology*Physics, 2009, 74, 4, 1256, 10.1016/j.ijrobp.2009.02.023
  • 9. Ming Chao, Yaoqin Xie, Eduardo G. Moros, Quynh-Thu Le, Lei Xing, Image-based modeling of tumor shrinkage in head and neck radiation therapya), Medical Physics, 2010, 37, 5, 2351, 10.1118/1.3399872
  • 10. Jidong Hou, Mariana Guerrero, Wenjuan Chen, Warren D. D'Souza, Deformable planning CT to cone-beam CT image registration in head-and-neck cancer, Medical Physics, 2011, 38, 4, 2088, 10.1118/1.3554647
  • 11. Nicolás Barnafi, Gabriel N. Gatica, Daniel E. Hurtado, Primal and Mixed Finite Element Methods for Deformable Image Registration Problems, SIAM Journal on Imaging Sciences, 2018, 11, 4, 2529, 10.1137/17M115219X
  • 12. Klas Modin, Adrian Nachman, Luca Rondi, A multiscale theory for image registration and nonlinear inverse problems, Advances in Mathematics, 2019, 346, 1009, 10.1016/j.aim.2019.02.014
  • 13. Lisa Tang, Ghassan Hamarneh, Rafeef Abugharbieh, , Biomedical Image Registration, 2010, Chapter 16, 173, 10.1007/978-3-642-14366-3_16
  • 14. Sebastian Suhr, Daniel Tenbrinck, Martin Burger, Jan Modersitzki, , Biomedical Image Registration, 2014, Chapter 24, 231, 10.1007/978-3-319-08554-8_24

Reader Comments

your name: *   your email: *  

Copyright Info: 2008, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved