Mathematical Biosciences and Engineering, 2007, 4(4): 573-594. doi: 10.3934/mbe.2007.4.573.

Primary: 92D25; Secondary: 60J99.

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes

1. Department of Statistics and O.R., Faculty of Mathematics, Complutense University of Madrid, Madrid 28040
2. Department of Mathematics, University of Athens, Panepistemiopolis, Athens 15784
3. School of Statistics, Complutense University of Madrid, Madrid 28040

Populations are often subject to the effect of catastrophic events that cause mass removal. In particular, metapopulation models, epidemics, and migratory flows provide practical examples of populations subject to disasters (e.g., habitat destruction, environmental catastrophes). Many stochastic models have been developed to explain the behavior of these populations. Most of the reported results concern the measures of the risk of extinction and the distribution of the population size in the case of total catastrophes where all individuals in the population are removed simultaneously. In this paper, we investigate the basic immigration process subject to binomial and geometric catastrophes; that is, the population size is reduced according to a binomial or a geometric law. We carry out an extensive analysis including first extinction time, number of individuals removed, survival time of a tagged individual, and maximum population size reached between two consecutive extinctions. Many explicit expressions are derived for these system descriptors, and some emphasis is put to show that some of them deserve extra attention.
  Article Metrics

Keywords extinction time; metapopulation dynamics; survival time.; maximum population size; immigration process; persistence time; environmental catastrophes; Disasters; Markov chain

Citation: Jesus R. Artalejo, A. Economou, M.J. Lopez-Herrero. Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes. Mathematical Biosciences and Engineering, 2007, 4(4): 573-594. doi: 10.3934/mbe.2007.4.573


This article has been cited by

  • 1. Maria Conceição A. Leite, Nikola P. Petrov, Ensheng Weng, Stationary distributions of semistochastic processes with disturbances at random times and with random severity, Nonlinear Analysis: Real World Applications, 2012, 13, 2, 497, 10.1016/j.nonrwa.2011.02.025
  • 2. Spiros Dimou, Antonis Economou, Demetrios Fakinos, The single server vacation queueing model with geometric abandonments, Journal of Statistical Planning and Inference, 2011, 141, 8, 2863, 10.1016/j.jspi.2011.03.010
  • 3. Antonis Economou, Stella Kapodistria, Synchronized abandonments in a single server unreliable queue, European Journal of Operational Research, 2010, 203, 1, 143, 10.1016/j.ejor.2009.07.014
  • 4. Spiros Dimou, Antonis Economou, The Single Server Queue with Catastrophes and Geometric Reneging, Methodology and Computing in Applied Probability, 2013, 15, 3, 595, 10.1007/s11009-011-9271-6
  • 5. Stella Kapodistria, Tuan Phung-Duc, Jacques Resing, LINEAR BIRTH/IMMIGRATION-DEATH PROCESS WITH BINOMIAL CATASTROPHES, Probability in the Engineering and Informational Sciences, 2016, 30, 01, 79, 10.1017/S0269964815000297
  • 6. Carlo Lancia, Gianluca Guadagni, Sokol Ndreca, Benedetto Scoppola, Asymptotics for the late arrivals problem, Mathematical Methods of Operations Research, 2018, 10.1007/s00186-018-0643-3
  • 7. Antonis Economou, Demetris Fakinos, Alternative Approaches for the Transient Analysis of Markov Chains with Catastrophes, Journal of Statistical Theory and Practice, 2008, 2, 2, 183, 10.1080/15598608.2008.10411870
  • 8. Valdivino Vargas Junior, Fábio Prates Machado, Alejandro Roldán-Correa, Dispersion as a Survival Strategy, Journal of Statistical Physics, 2016, 164, 4, 937, 10.1007/s10955-016-1571-3
  • 9. Ivo Adan, Antonis Economou, Stella Kapodistria, Synchronized reneging in queueing systems with vacations, Queueing Systems, 2009, 62, 1-2, 1, 10.1007/s11134-009-9112-2
  • 10. J.R. Artalejo, A. Economou, M.J. Lopez-Herrero, On the number of recovered individuals in the SIS and SIR stochastic epidemic models, Mathematical Biosciences, 2010, 228, 1, 45, 10.1016/j.mbs.2010.08.006
  • 11. J. R. Artalejo, A. Economou, M. J. Lopez-Herrero, Stochastic epidemic models revisited: analysis of some continuous performance measures, Journal of Biological Dynamics, 2012, 6, 2, 189, 10.1080/17513758.2011.552737
  • 12. J.R. Artalejo, M.J. Lopez-Herrero, Quasi-stationary and ratio of expectations distributions: A comparative study, Journal of Theoretical Biology, 2010, 266, 2, 264, 10.1016/j.jtbi.2010.06.030
  • 13. Stella Kapodistria, The M/M/1 queue with synchronized abandonments, Queueing Systems, 2011, 68, 1, 79, 10.1007/s11134-011-9219-0
  • 14. Antonis Economou, Stella Kapodistria, q-SERIES IN MARKOV CHAINS WITH BINOMIAL TRANSITIONS, Probability in the Engineering and Informational Sciences, 2009, 23, 01, 75, 10.1017/S0269964809000084
  • 15. F. P. Barbhuiya, Nitin Kumar, U. C. Gupta, Batch Renewal Arrival Process Subject to Geometric Catastrophes, Methodology and Computing in Applied Probability, 2018, 10.1007/s11009-018-9643-2
  • 16. Tao Jiang, Baogui Xin, Baoxian Chang, Liwei Liu, Analysis of a queueing system in random environment with an unreliable server and geometric abandonments, RAIRO - Operations Research, 2018, 52, 3, 903, 10.1051/ro/2018021
  • 17. Fábio P. Machado, Alejandro Roldán-Correa, Valdivino V. Junior, Colonization and Collapse on Homogeneous Trees, Journal of Statistical Physics, 2018, 10.1007/s10955-018-2161-3
  • 18. Jesús R. Artalejo, , Modern Mathematical Tools and Techniques in Capturing Complexity, 2011, Chapter 26, 379, 10.1007/978-3-642-20853-9_26
  • 19. Antonis Economou, Stella Kapodistria, Jacques Resing, The Single Server Queue with Synchronized Services, Stochastic Models, 2010, 26, 4, 617, 10.1080/15326349.2010.519670
  • 20. Nitin Kumar, U. C. Gupta, Analysis of batch Bernoulli process subject to discrete-time renewal generated binomial catastrophes, Annals of Operations Research, 2019, 10.1007/s10479-019-03410-z
  • 21. Nitin Kumar, U. C. Gupta, Analysis of a population model with batch Markovian arrivals influenced by Markov arrival geometric catastrophes, Communications in Statistics - Theory and Methods, 2019, 1, 10.1080/03610926.2019.1682166
  • 22. Nitin Kumar, U. C. Gupta, A Renewal Generated Geometric Catastrophe Model with Discrete-Time Markovian Arrival Process, Methodology and Computing in Applied Probability, 2020, 10.1007/s11009-019-09768-8

Reader Comments

your name: *   your email: *  

Copyright Info: 2007, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved