Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland

1. Center for Nonlinear Studies (MS B284), Los Alamos National Laboratory, Los Alamos, NM 87545
2. Institute of Social and Preventive Medicine, Faculty of Medicine, CMU, PoBox 1211, Geneva 4
3. Discrete Simulation Sciences (CCS-5), Los Alamos National Laboratory, Los Alamos, NM 87545

   

At the outset of an influenza pandemic, early estimates of the number of secondary cases generated by a primary influenza case (reproduction number, $R$) and its associated uncertainty can help determine the intensity of interventions necessary for control. Using a compartmental model and hospital notification data of the first two waves of the Spanish flu pandemic in Geneva, Switzerland in 1918, we estimate the reproduction number from the early phase of the pandemic waves. For the spring and fall pandemic waves, we estimate reproduction numbers of $1.57$ ($95\%$ CI: $1.45$, $1.70$) and $3.10$ ($2.81$, $3.39$), respectively, from the initial epidemic phase comprising the first $10$ epidemic days of the corresponding wave. Estimates of the variance of our point estimates of $R$ were computed via a parametric bootstrap. We compare these estimates with others obtained using different observation windows to provide insight into how early into an epidemic the reproduction number can be estimated.
  Figure/Table
  Supplementary
  Article Metrics

Keywords spanish flu; 1918 influenza pandemic; reproduction number; boot- strapping; nonlinear curve fitting; uncertainty quantification; Geneva; Switzerland.

Citation: Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences and Engineering, 2007, 4(3): 457-470. doi: 10.3934/mbe.2007.4.457

 

This article has been cited by

  • 1. Chaeshin Chu, Junehawk Lee, Dong Hoon Choi, Seung-Ki Youn, Jong-Koo Lee, Sensitivity Analysis of the Parameters of Korea’s Pandemic Influenza Preparedness Plan, Osong Public Health and Research Perspectives, 2011, 2, 3, 210, 10.1016/j.phrp.2011.11.048
  • 2. Md. Samsuzzoha, Manmohan Singh, David Lucy, A numerical study on an influenza epidemic model with vaccination and diffusion, Applied Mathematics and Computation, 2012, 219, 1, 122, 10.1016/j.amc.2012.04.089
  • 3. S. Dorjee, Z. Poljak, C. W. Revie, J. Bridgland, B. McNab, E. Leger, J. Sanchez, A Review of Simulation Modelling Approaches Used for the Spread of Zoonotic Influenza Viruses in Animal and Human Populations, Zoonoses and Public Health, 2013, 60, 6, 383, 10.1111/zph.12010
  • 4. Hiroshi Nishiura, Ping Yan, Candace K. Sleeman, Charles J. Mode, Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks, Journal of Theoretical Biology, 2012, 294, 48, 10.1016/j.jtbi.2011.10.039
  • 5. Tridip Sardar, Soumalya Mukhopadhyay, Amiya Ranjan Bhowmick, Joydev Chattopadhyay, Alessandro Vespignani, An Optimal Cost Effectiveness Study on Zimbabwe Cholera Seasonal Data from 2008–2011, PLoS ONE, 2013, 8, 12, e81231, 10.1371/journal.pone.0081231
  • 6. Lisa Sattenspiel, Regional patterns of mortality during the 1918 influenza pandemic in Newfoundland, Vaccine, 2011, 29, B33, 10.1016/j.vaccine.2011.02.046
  • 7. Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd, Parameter estimation and uncertainty quantification for an epidemic model, Mathematical Biosciences and Engineering, 2012, 9, 3, 553, 10.3934/mbe.2012.9.553
  • 8. Charlotte Jackson, Emilia Vynnycky, Punam Mangtani, The Relationship Between School Holidays and Transmission of Influenza in England and Wales, American Journal of Epidemiology, 2016, 184, 9, 644, 10.1093/aje/kww083
  • 9. Gerardo Chowell, Hiroshi Nishiura, Quantifying the transmission potential of pandemic influenza, Physics of Life Reviews, 2008, 5, 1, 50, 10.1016/j.plrev.2007.12.001
  • 10. Y. Yang, J. D. Sugimoto, M. E. Halloran, N. E. Basta, D. L. Chao, L. Matrajt, G. Potter, E. Kenah, I. M. Longini, The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus, Science, 2009, 326, 5953, 729, 10.1126/science.1177373
  • 11. Maciej F Boni, Bui Huu Manh, Pham Quang Thai, Jeremy Farrar, Tran Tinh Hien, Nguyen Tran Hien, Nguyen Van Kinh, Peter Horby, Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses, BMC Medicine, 2009, 7, 1, 10.1186/1741-7015-7-43
  • 12. Rodolfo Acuna-Soto, , Mathematical and Statistical Estimation Approaches in Epidemiology, 2009, Chapter 9, 189, 10.1007/978-90-481-2313-1_9
  • 13. Gerardo Chowell, Fred Brauer, , Mathematical and Statistical Estimation Approaches in Epidemiology, 2009, Chapter 1, 1, 10.1007/978-90-481-2313-1_1
  • 14. Ian York, Ruben O. Donis, , Swine Influenza, 2012, Chapter 221, 241, 10.1007/82_2012_221
  • 15. Jon Brugger, Christian L. Althaus, Transmission of and susceptibility to seasonal influenza in Switzerland from 2003 to 2015, Epidemics, 2019, 100373, 10.1016/j.epidem.2019.100373
  • 16. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, , Mathematical Models in Epidemiology, 2019, Chapter 9, 311, 10.1007/978-1-4939-9828-9_9

Reader Comments

your name: *   your email: *  

Copyright Info: 2007, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved