Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A mathematical model for M-phase specific chemotherapy including the $G_0$-phase and immunoresponse

1. Department of Mathematical & Statistical Sciences, University of Alberta, Edmonton, T6G 2G1
2. Department of Mathematical and Statistical Sciences, Centre for Mathematical Biology, University of Alberta, Edmonton, T6G 2G1

In this paper we use a mathematical model to study the effect of an $M$-phase specific drug on the development of cancer, including the resting phase $G_0$ and the immune response. The cell cycle of cancer cells is split into the mitotic phase (M-phase), the quiescent phase ($G_0$-phase) and the interphase ($G_1,\ S,\ G_2$ phases). We include a time delay for the passage through the interphase, and we assume that the immune cells interact with all cancer cells. We study analytically and numerically the stability of the cancer-free equilibrium and its dependence on the model parameters. We find that quiescent cells can escape the $M$-phase drug. The dynamics of the $G_0$ phase dictates the dynamics of cancer as a whole. Moreover, we find oscillations through a Hopf bifurcation. Finally, we use the model to discuss the efficiency of cell synchronization before treatment (synchronization method).
  Article Metrics

Keywords Hopf bifurcation. ; cancer growth; cycle-phase-specific drugs; time delay

Citation: Wenxiang Liu, Thomas Hillen, H. I. Freedman. A mathematical model for M-phase specific chemotherapy including the $G_0$-phase and immunoresponse. Mathematical Biosciences and Engineering, 2007, 4(2): 239-259. doi: 10.3934/mbe.2007.4.239


This article has been cited by

  • 1. D. Adongo, K.R. Fister, Delay Dynamics of Cancer and Immune Cell Model, Mathematical Modelling of Natural Phenomena, 2012, 7, 1, 261, 10.1051/mmnp/20127112
  • 2. Ranadhir Roy, Daniel N. Riahi, Jorge Cisneros, Effect of Combined Anticancer Drugs Treatment on Heterogeneous Brain Tumors, International Journal of Applied and Computational Mathematics, 2017, 3, 4, 3877, 10.1007/s40819-017-0331-7
  • 3. Christophe Letellier, Sourav Kumar Sasmal, Clément Draghi, Fabrice Denis, Dibakar Ghosh, A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis, Chaos, Solitons & Fractals, 2017, 99, 297, 10.1016/j.chaos.2017.04.013
  • 4. Heiko Enderling, Mark A. J. Chaplain, Philip Hahnfeldt, Quantitative Modeling of Tumor Dynamics and Radiotherapy, Acta Biotheoretica, 2010, 58, 4, 341, 10.1007/s10441-010-9111-z
  • 5. Thomas Hillen, Gerda de Vries, Jiafen Gong, Chris Finlay, From cell population models to tumor control probability: Including cell cycle effects, Acta Oncologica, 2010, 49, 8, 1315, 10.3109/02841861003631487
  • 6. Deming Zhu, Shigui Ruan, Dan Liu, Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions, Mathematical Biosciences and Engineering, 2012, 9, 2, 347, 10.3934/mbe.2012.9.347
  • 7. Thomas Hillen, Heiko Enderling, Philip Hahnfeldt, The Tumor Growth Paradox and Immune System-Mediated Selection for Cancer Stem Cells, Bulletin of Mathematical Biology, 2013, 75, 1, 161, 10.1007/s11538-012-9798-x
  • 8. Hamid Khaloozadeh, Yazdan Batmani, On the design of human immunodeficiency virus treatment based on a non-linear time-delay model, IET Systems Biology, 2014, 8, 1, 13, 10.1049/iet-syb.2013.0012
  • 9. Gibin G. Powathil, Douglas J. A. Adamson, Mark A. J. Chaplain, Vito Quaranta, Towards Predicting the Response of a Solid Tumour to Chemotherapy and Radiotherapy Treatments: Clinical Insights from a Computational Model, PLoS Computational Biology, 2013, 9, 7, e1003120, 10.1371/journal.pcbi.1003120
  • 10. Abdessamad Tridane, Radouane Yafia, M.A. Aziz-Alaoui, Targeting the quiescent cells in cancer chemotherapy treatment: Is it enough?, Applied Mathematical Modelling, 2016, 40, 7-8, 4844, 10.1016/j.apm.2015.12.023
  • 11. Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl, Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells, Mathematical Biosciences and Engineering, 2012, 9, 2, 241, 10.3934/mbe.2012.9.241
  • 12. Jerry J. Batzel, Franz Kappel, Time delay in physiological systems: Analyzing and modeling its impact, Mathematical Biosciences, 2011, 234, 2, 61, 10.1016/j.mbs.2011.08.006
  • 13. Gibin G. Powathil, Maciej Swat, Mark A.J. Chaplain, Systems oncology: Towards patient-specific treatment regimes informed by multiscale mathematical modelling, Seminars in Cancer Biology, 2015, 30, 13, 10.1016/j.semcancer.2014.02.003
  • 14. Álvaro G. López, Kelly C. Iarosz, Antonio M. Batista, Jesús M. Seoane, Ricardo L. Viana, Miguel A.F. Sanjuán, Nonlinear cancer chemotherapy: modelling the Norton-Simon hypothesis, Communications in Nonlinear Science and Numerical Simulation, 2018, 10.1016/j.cnsns.2018.11.006
  • 15. Tyler Cassidy, Antony R Humphries, A mathematical model of viral oncology as an immuno-oncology instigator, Mathematical Medicine and Biology: A Journal of the IMA, 2019, 10.1093/imammb/dqz008
  • 16. C. Collins, K.R. Fister, M. Williams, Optimal Control of a Cancer Cell Model with Delay, Mathematical Modelling of Natural Phenomena, 2010, 5, 3, 63, 10.1051/mmnp/20105305
  • 17. Joanna R. Wares, Joseph J. Crivelli, Peter S. Kim, , Mathematical Models of Tumor-Immune System Dynamics, 2014, Chapter 10, 253, 10.1007/978-1-4939-1793-8_10
  • 18. Gibin Powathil, Mark A. J. Chaplain, , Mathematical Oncology 2013, 2014, Chapter 8, 237, 10.1007/978-1-4939-0458-7_8

Reader Comments

your name: *   your email: *  

Copyright Info: 2007, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved