Competing species models with an infectious disease

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 92D30, 92D40.

  • The frequency-dependent (standard) form of the incidence is used for the transmission dynamics of an infectious disease in a competing species model. In the global analysis of the SIS model with the birth rate independent of the population size, a modified reproduction number $\mathbf{R}_1$ determines the asymptotic behavior, so that the disease dies out if $\mathbf{R}_1 \leq 1$ and approaches a globally attractive endemic equilibrium if $\mathbf{R}_1 > 1$. Because the disease- reduced reproduction and disease-related death rates are often different in two competing species, a shared disease can change the outcome of the competition. Models of SIR and SIRS type are also considered. A key result in all of these models with the frequency-dependent incidence is that the disease must either die out in both species or remain endemic in both species.

    Citation: Roberto A. Saenz, Herbert W. Hethcote. Competing species models with an infectious disease[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 219-235. doi: 10.3934/mbe.2006.3.219

    Related Papers:

  • The frequency-dependent (standard) form of the incidence is used for the transmission dynamics of an infectious disease in a competing species model. In the global analysis of the SIS model with the birth rate independent of the population size, a modified reproduction number $\mathbf{R}_1$ determines the asymptotic behavior, so that the disease dies out if $\mathbf{R}_1 \leq 1$ and approaches a globally attractive endemic equilibrium if $\mathbf{R}_1 > 1$. Because the disease- reduced reproduction and disease-related death rates are often different in two competing species, a shared disease can change the outcome of the competition. Models of SIR and SIRS type are also considered. A key result in all of these models with the frequency-dependent incidence is that the disease must either die out in both species or remain endemic in both species.


    加载中
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2100) PDF downloads(721) Cited by(20)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog