Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system

1. Department of Systems Engineering, Faculty of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561

We consider the following Lotka-Volterra predator-prey system with two delays:
$x'(t) = x(t) [r_1 - ax(t- \tau_1) - by(t)]$
$y'(t) = y(t) [-r_2 + cx(t) - dy(t- \tau_2)]$ (E)
We show that a positive equilibrium of system (E) is globally asymptotically stable for small delays. Critical values of time delay through which system (E) undergoes a Hopf bifurcation are analytically determined. Some numerical simulations suggest an existence of subcritical Hopf bifurcation near the critical values of time delay. Further system (E) exhibits some chaotic behavior when $tau_2$ becomes large.
  Figure/Table
  Supplementary
  Article Metrics

Keywords subcritical Hopf bifurcation; nonlinear dynamics.; chaotic behavior; predator-prey; mathematical model

Citation: S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences and Engineering, 2006, 3(1): 173-187. doi: 10.3934/mbe.2006.3.173

 

Reader Comments

your name: *   your email: *  

Copyright Info: 2006, S. Nakaoka, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved