Mathematical Biosciences and Engineering, 2005, 2(4): 719-741. doi: 10.3934/mbe.2005.2.719.

92D25, 92D40, 86A05, 35K15, 35K20, 35K57,65M06, 86A22, 65K10, 93B30.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery

1. CNRS I3S, Les Algorithmes, 2000 route des lucioles, BP 121, 06903, Sophia Antipolis Cedex
2. Institut de Recherche pour le Développement, Centre de Recherche Halieutique, avenue Jean Monnet, BP 171, 34200 Sète

   

We develop an advection-diffusion size-structured fish population dynamics model and apply it to simulate the skipjack tuna population in the Indian Ocean. The model is fully spatialized, and movements are parameterized with oceanographical and biological data; thus it naturally reacts to environment changes. We first formulate an initial-boundary value problem and prove existence of a unique positive solution. We then discuss the numerical scheme chosen for the integration of the simulation model. In a second step we address the parameter estimation problem for such a model. With the help of automatic differentiation, we derive the adjoint code which is used to compute the exact gradient of a Bayesian cost function measuring the distance between the outputs of the model and catch and length frequency data. A sensitivity analysis shows that not all parameters can be estimated from the data. Finally twin experiments in which pertubated parameters are recovered from simulated data are successfully conducted.
  Figure/Table
  Supplementary
  Article Metrics

Keywords tuna fisheries; well-posed initial- boundary value problem; statistical parameter estimation; stock-assessment.; Population dynamics model; size structure

Citation: Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences and Engineering, 2005, 2(4): 719-741. doi: 10.3934/mbe.2005.2.719

 

This article has been cited by

  • 1. Daniel R. Goethel, Terrance J. Quinn, Steven X. Cadrin, Incorporating Spatial Structure in Stock Assessment: Movement Modeling in Marine Fish Population Dynamics, Reviews in Fisheries Science, 2011, 19, 2, 119, 10.1080/10641262.2011.557451
  • 2. Sibylle Dueri, Blaise Faugeras, Olivier Maury, Modelling the skipjack tuna dynamics in the Indian Ocean with APECOSM-E – Part 2: Parameter estimation and sensitivity analysis, Ecological Modelling, 2012, 245, 55, 10.1016/j.ecolmodel.2012.02.008
  • 3. Lisa A. Kerr, Daniel R. Goethel, , Stock Identification Methods, 2014, 501, 10.1016/B978-0-12-397003-9.00021-7
  • 4. Alistair J. Hobday, Jock W. Young, Osamu Abe, Daniel P. Costa, Robert K. Cowen, Karen Evans, Maria A. Gasalla, Rudy Kloser, Olivier Maury, Kevin C. Weng, Climate impacts and oceanic top predators: moving from impacts to adaptation in oceanic systems, Reviews in Fish Biology and Fisheries, 2013, 23, 4, 537, 10.1007/s11160-013-9311-0
  • 5. Qiang-Jun Xie, Ze-Rong He, Chun-Guo Zhang, Harvesting Renewable Resources of Population with Size Structure and Diffusion, Abstract and Applied Analysis, 2014, 2014, 1, 10.1155/2014/396420
  • 6. Blaise Faugeras, Olivier Maury, Modeling fish population movements: From an individual-based representation to an advection–diffusion equation, Journal of Theoretical Biology, 2007, 247, 4, 837, 10.1016/j.jtbi.2007.04.012
  • 7. Inna N. Senina, Patrick Lehodey, John Hampton, John Sibert, Quantitative modeling of the spatial dynamics of South Pacific and Atlantic albacore tuna populations, Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 104667, 10.1016/j.dsr2.2019.104667

Reader Comments

your name: *   your email: *  

Copyright Info: 2005, Blaise Faugeras, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved