Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Critical-Point Analysis For Three-Variable Cancer Angiogenesis Models

1. Institute of Applied Mathematics, Informatics and Mechanics, Warsaw University, Banacha 2, 02-097 Warsaw
2. Institute for Medical BioMathematics, 10 Hate'ena St., POB 282, Bene Ataroth

We perform critical-point analysis for three-variable systems that represent essential processes of the growth of the angiogenic tumor, namely, tumor growth, vascularization, and generation of angiogenic factor (protein) as a function of effective vessel density. Two models that describe tumor growth depending on vascular mass and regulation of new vessel formation through a key angiogenic factor are explored. The first model is formulated in terms of ODEs, while the second assumes delays in this regulation, thus leading to a system of DDEs. In both models, the only nontrivial critical point is always unstable, while one of the trivial critical points is always stable. The models predict unlimited growth, if the initial condition is close enough to the nontrivial critical point, and this growth may be characterized by oscillations in tumor and vascular mass. We suggest that angiogenesis per se does not suffice for explaining the observed stabilization of vascular tumor size.
  Figure/Table
  Supplementary
  Article Metrics

Keywords instability; stability; angiogenesis; critical point; time delay.; asymptotic behavior; mathematical model; vascular network

Citation: Urszula Foryś, Yuri Kheifetz, Yuri Kogan. Critical-Point Analysis For Three-Variable Cancer Angiogenesis Models. Mathematical Biosciences and Engineering, 2005, 2(3): 511-525. doi: 10.3934/mbe.2005.2.511

 

This article has been cited by

  • 1. Alberto d’Onofrio, Urszula Ledzewicz, Helmut Maurer, Heinz Schättler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 2009, 222, 1, 13, 10.1016/j.mbs.2009.08.004
  • 2. Zvia Agur, Naamah Bloch, Boris Gorelik, Marina Kleiman, Yuri Kogan, Yael Sagi, D. Sidransky, Yael Ronen, , Systems Biology in Drug Discovery and Development, 2011, 201, 10.1002/9781118016435.ch9
  • 3. Marzena Dołbniak, Andrzej Świerniak, Comparison of Simple Models of Periodic Protocols for Combined Anticancer Therapy, Computational and Mathematical Methods in Medicine, 2013, 2013, 1, 10.1155/2013/567213
  • 4. Alberto d’Onofrio, Rapidly acting antitumoral antiangiogenic therapies, Physical Review E, 2007, 76, 3, 10.1103/PhysRevE.76.031920
  • 5. Urszula Foryś, Monika J. Piotrowska, Analysis of the Hopf bifurcation for the family of angiogenesis models II: The case of two nonzero unequal delays, Applied Mathematics and Computation, 2013, 220, 277, 10.1016/j.amc.2013.05.077
  • 6. Zvia Agur, , Statistical Methods in Healthcare, 2012, 78, 10.1002/9781119940012.ch4
  • 7. Moran Elishmereni, Yuri Kheifetz, Henrik Søndergaard, Rune Viig Overgaard, Zvia Agur, Thomas Lengauer, An Integrated Disease/Pharmacokinetic/Pharmacodynamic Model Suggests Improved Interleukin-21 Regimens Validated Prospectively for Mouse Solid Cancers, PLoS Computational Biology, 2011, 7, 9, e1002206, 10.1371/journal.pcbi.1002206
  • 8. Alberto d’Onofrio, Paola Cerrai, A bi-parametric model for the tumour angiogenesis and antiangiogenesis therapy, Mathematical and Computer Modelling, 2009, 49, 5-6, 1156, 10.1016/j.mcm.2008.05.001
  • 9. A. d’Onofrio, A. Gandolfi, A. Rocca, The dynamics of tumour-vasculature interaction suggests low-dose, time-dense anti-angiogenic schedulings, Cell Proliferation, 2009, 42, 3, 317, 10.1111/j.1365-2184.2009.00595.x
  • 10. Andrzej Swierniak, Marek Kimmel, Jaroslaw Smieja, Mathematical modeling as a tool for planning anticancer therapy, European Journal of Pharmacology, 2009, 625, 1-3, 108, 10.1016/j.ejphar.2009.08.041
  • 11. Alberto d’Onofrio, Alberto Gandolfi, Chemotherapy of vascularised tumours: Role of vessel density and the effect of vascular “pruning”, Journal of Theoretical Biology, 2010, 264, 2, 253, 10.1016/j.jtbi.2010.01.023
  • 12. Alberto d’Onofrio, Alberto Gandolfi, Resistance to antitumor chemotherapy due to bounded-noise-induced transitions, Physical Review E, 2010, 82, 6, 10.1103/PhysRevE.82.061901
  • 13. Urszula Ledzewicz, Heinz Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis, Journal of Theoretical Biology, 2008, 252, 2, 295, 10.1016/j.jtbi.2008.02.014
  • 14. Urszula Ledzewicz, Behrooz Amini, Heinz Schättler, Dynamics and control of a mathematical model for metronomic chemotherapy, Mathematical Biosciences and Engineering, 2015, 12, 6, 1257, 10.3934/mbe.2015.12.1257
  • 15. Bülent Karasözen, Hakan Öktem, Mustafa Kahraman, A model of angiogenesis by hybrid systems with delay on the piecewise constant part, Journal of Process Control, 2009, 19, 8, 1257, 10.1016/j.jprocont.2009.05.003
  • 16. Marek Bodnar, Pilar Guerrero, Ruben Perez-Carrasco, Monika J. Piotrowska, Grant Lythe, Deterministic and Stochastic Study for a Microscopic Angiogenesis Model: Applications to the Lewis Lung Carcinoma, PLOS ONE, 2016, 11, 5, e0155553, 10.1371/journal.pone.0155553
  • 17. Urszula Ledzewicz, Heinz Schaettler, On an extension of a mathematical model for tumor anti-angiogenesis, Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 12, e2390, 10.1016/j.na.2009.05.037
  • 18. Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Ewa Nizińska, Model of tumour angiogenesis -- analysis of stability with respect to delays, Mathematical Biosciences and Engineering, 2012, 10, 1, 19, 10.3934/mbe.2013.10.19
  • 19. Monika J. Piotrowska, Urszula Foryś, The nature of Hopf bifurcation for the Gompertz model with delays, Mathematical and Computer Modelling, 2011, 54, 9-10, 2183, 10.1016/j.mcm.2011.05.027
  • 20. Alberto d’Onofrio, Alberto Gandolfi, , Bounded Noises in Physics, Biology, and Engineering, 2013, Chapter 11, 171, 10.1007/978-1-4614-7385-5_11

Reader Comments

your name: *   your email: *  

Copyright Info: 2005, Urszula Foryś, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved