Partial Differential Equations-Based Segmentation for Radiotherapy Treatment Planning

  • Received: 01 October 2004 Accepted: 29 June 2018 Published: 01 March 2005
  • MSC : primary 92C55; secondary 92C50.

  • The purpose of this study is to develop automatic algorithms for the segmentation phase of radiotherapy treatment planning. We develop new image processing techniques that are based on solving a partial differential equation for the evolution of the curve that identifies the segmented organ. The velocity function is based on the piecewise Mumford-Shah functional. Our method incorporates information about the target organ into classical segmentation algorithms. This information, which is given in terms of a three-dimensional wireframe representation of the organ, serves as an initial guess for the segmentation algorithm. We check the performance of the new algorithm on eight data sets of three different organs: rectum, bladder, and kidney. The results of the automatic segmentation were compared with a manual segmentation of each data set by radiation oncology faculty and residents. The quality of the automatic segmentation was measured with the ''$\kappa$-statistics'', and with a count of over- and undersegmented frames, and was shown in most cases to be very close to the manual segmentation of the same data. A typical segmentation of an organ with sixty slices takes less than ten seconds on a Pentium IV laptop.

    Citation: Frédéric Gibou, Doron Levy, Carlos Cárdenas, Pingyu Liu, Arthur Boyer. Partial Differential Equations-Based Segmentation for Radiotherapy Treatment Planning[J]. Mathematical Biosciences and Engineering, 2005, 2(2): 209-226. doi: 10.3934/mbe.2005.2.209

    Related Papers:

  • The purpose of this study is to develop automatic algorithms for the segmentation phase of radiotherapy treatment planning. We develop new image processing techniques that are based on solving a partial differential equation for the evolution of the curve that identifies the segmented organ. The velocity function is based on the piecewise Mumford-Shah functional. Our method incorporates information about the target organ into classical segmentation algorithms. This information, which is given in terms of a three-dimensional wireframe representation of the organ, serves as an initial guess for the segmentation algorithm. We check the performance of the new algorithm on eight data sets of three different organs: rectum, bladder, and kidney. The results of the automatic segmentation were compared with a manual segmentation of each data set by radiation oncology faculty and residents. The quality of the automatic segmentation was measured with the ''$\kappa$-statistics'', and with a count of over- and undersegmented frames, and was shown in most cases to be very close to the manual segmentation of the same data. A typical segmentation of an organ with sixty slices takes less than ten seconds on a Pentium IV laptop.


    加载中
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1829) PDF downloads(498) Cited by(14)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog