Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Stoichiometric Plant-Herbivore Models and Their Interpretation

1. Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804
2. Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam
3. Department of Biology, Arizona State University, Tempe, AZ 85287-1501

The purpose of this note is to mechanistically formulate a mathematically tractable model that specifically deals with the dynamics of plant-herbivore interaction in a closed phosphorous (P) limiting environment. The key to our approach is the employment of the plant cell P quota and the Droop equation for its growth. Our model takes the simple form of a system of two autonomous ordinary differential equations. It can be shown that our model includes the LKE model (Loladze, Kuang and Elser (2000)) as a special case. Our study reveals that the details of ecological stoichiometry models really matter for quantitative predictions of plant-herbivore dynamics, especially at intermediate ranges of the carrying capacity.
  Article Metrics

Keywords predator-prey model; stoichiometry; phosphorus uptake.; logistic equation; Droop model

Citation: Yang Kuang, Jef Huisman, James J. Elser. Stoichiometric Plant-Herbivore Models and Their Interpretation. Mathematical Biosciences and Engineering, 2004, 1(2): 215-222. doi: 10.3934/mbe.2004.1.215


This article has been cited by

  • 1. Harlan Stech, Bruce Peckham, John Pastor, Quasi-equilibrium reduction in a general class of stoichiometric producer–consumer models, Journal of Biological Dynamics, 2012, 6, 2, 992, 10.1080/17513758.2012.713124
  • 2. Hao Wang, Hal L. Smith, Yang Kuang, James J. Elser, Dynamics of Stoichiometric Bacteria-Algae Interactions in the Epilimnion, SIAM Journal on Applied Mathematics, 2007, 68, 2, 503, 10.1137/060665919
  • 3. Angela Peace, Effects of light, nutrients, and food chain length on trophic efficiencies in simple stoichiometric aquatic food chain models, Ecological Modelling, 2015, 312, 125, 10.1016/j.ecolmodel.2015.05.019
  • 4. Andrew P. Allen, James F. Gillooly, Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling, Ecology Letters, 2009, 12, 5, 369, 10.1111/j.1461-0248.2009.01302.x
  • 5. Hao Wang, Yang Kuang, Irakli Loladze, Dynamics of a mechanistically derived stoichiometric producer-grazer model, Journal of Biological Dynamics, 2008, 2, 3, 286, 10.1080/17513750701769881
  • 6. Mehdi Cherif, Michel Loreau, Towards a more biologically realistic use of Droop's equations to model growth under multiple nutrient limitation, Oikos, 2010, 119, 6, 897, 10.1111/j.1600-0706.2010.18397.x
  • 7. Xiong Li, Hao Wang, Yang Kuang, Global analysis of a stoichiometric producer–grazer model with Holling type functional responses, Journal of Mathematical Biology, 2011, 63, 5, 901, 10.1007/s00285-010-0392-2
  • 8. Harlan Stech, Bruce Peckham, John Pastor, Enrichment in a general class of stoichiometric producer–consumer population growth models, Theoretical Population Biology, 2012, 81, 3, 210, 10.1016/j.tpb.2012.01.003
  • 9. James J. Elser, Irakli Loladze, Angela L. Peace, Yang Kuang, Lotka re-loaded: Modeling trophic interactions under stoichiometric constraints, Ecological Modelling, 2012, 245, 3, 10.1016/j.ecolmodel.2012.02.006
  • 10. Aaron Packer, Yantao Li, Tom Andersen, Qiang Hu, Yang Kuang, Milton Sommerfeld, Growth and neutral lipid synthesis in green microalgae: A mathematical model, Bioresource Technology, 2011, 102, 1, 111, 10.1016/j.biortech.2010.06.029
  • 11. Hao Liu, Aaron Packer, Yang Kuang, Stoichiometric producer-grazer models with varying nitrogen pools and ammonia toxicity, Discrete and Continuous Dynamical Systems - Series S, 2014, 7, 6, 1305, 10.3934/dcdss.2014.7.1305
  • 12. Ming Chen, Meng Fan, Yang Kuang, Global dynamics in a stoichiometric food chain model with two limiting nutrients, Mathematical Biosciences, 2017, 289, 9, 10.1016/j.mbs.2017.04.004
  • 13. Meng Fan, Irakli Loladze, Yang Kuang ∥, James J. Elser #, Dynamics of a stoichiometric discrete producer-grazer model, Journal of Difference Equations and Applications, 2005, 11, 4-5, 347, 10.1080/10236190412331335427
  • 14. Xiong Li, Hao Wang, A stoichiometrically derived algal growth model and its global analysis, Mathematical Biosciences and Engineering, 2010, 7, 4, 825, 10.3934/mbe.2010.7.825
  • 15. Lale Asik, Jackson Kulik, Kevin R. Long, Angela Peace, Seasonal Variation of Nutrient Loading in a Stoichiometric Producer–Consumer System, Bulletin of Mathematical Biology, 2019, 10.1007/s11538-019-00629-6
  • 16. E. M. Elsayed, Qamar Din, Period-doubling and Neimark–Sacker bifurcations of plant–herbivore models, Advances in Difference Equations, 2019, 2019, 1, 10.1186/s13662-019-2200-7
  • 17. Qamar Din, M. Sajjad Shabbir, M. Asif Khan, Khalil Ahmad, Bifurcation analysis and chaos control for a plant–herbivore model with weak predator functional response, Journal of Biological Dynamics, 2019, 13, 1, 481, 10.1080/17513758.2019.1638976
  • 18. Shengnan Zhao, Sanling Yuan, Hao Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, Journal of Differential Equations, 2019, 10.1016/j.jde.2019.11.004
  • 19. Sanling Yuan, Dongmei Wu, Guijie Lan, Hao Wang, Noise-Induced Transitions in a Nonsmooth Producer–Grazer Model with Stoichiometric Constraints, Bulletin of Mathematical Biology, 2020, 82, 5, 10.1007/s11538-020-00733-y
  • 20. CONGBO XIE, MENG FAN, WEI ZHAO, DYNAMICS OF A DISCRETE STOICHIOMETRIC TWO PREDATORS ONE PREY MODEL, Journal of Biological Systems, 2010, 18, 03, 649, 10.1142/S0218339010003457

Reader Comments

your name: *   your email: *  

Copyright Info: 2004, Yang Kuang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved