Research article

Hyers-Ulam stability of an n-variable quartic functional equation

  • Received: 31 August 2020 Accepted: 17 November 2020 Published: 20 November 2020
  • MSC : 32B72, 32B82, 39B52

  • In this note we investigate the general solution for the quartic functional equation of the form $ \begin{align*} \left( 3n+4 \right)f\left( \sum\limits_{i = 1}^{n}{{{x}_{i}}} \right)+\sum\limits_{j = 1}^{n}{f\left( -n{{x}_{j}}+\sum\limits_{i = 1,i\ne j}^{n}{{{x}_{i}}} \right)}& = \left( {{n}^{2}}+2n+1 \right)\sum\limits_{i = 1,i\ne j\ne k}^{n}{f\left( {{x}_{i}}+{{x}_{j}}+{{x}_{k}} \right)}\\ &-\frac{1}{2}\left( 3{{n}^{3}}-2{{n}^{2}}-13n-8 \right)\sum\limits_{i = 1,i\ne j}^{n}{f\left( {{x}_{i}}+{{x}_{j}} \right)} \\ & +\frac{1}{2}\left( {{n}^{3}}+2{{n}^{2}}+n \right)\sum\limits_{i = 1,i\ne j}^{n}{f\left( {{x}_{i}}-{{x}_{j}} \right)}\\ &+\frac{1}{2}\left( 3{{n}^{4}}-5{{n}^{3}}-7{{n}^{2}}+13n+12 \right)\sum\limits_{i = 1}^{n}{f\left( {{x}_{i}} \right)} \\ \end{align*} $ $\left(n\in \mathbb{N}, \, \, n > 4 \right)$ and also investigate the Hyers-Ulam stability of the quartic functional equation in random normed spaces using the direct approach and the fixed point approach.

    Citation: Vediyappan Govindan, Inho Hwang, Choonkil Park. Hyers-Ulam stability of an n-variable quartic functional equation[J]. AIMS Mathematics, 2021, 6(2): 1452-1469. doi: 10.3934/math.2021089

    Related Papers:

  • In this note we investigate the general solution for the quartic functional equation of the form $ \begin{align*} \left( 3n+4 \right)f\left( \sum\limits_{i = 1}^{n}{{{x}_{i}}} \right)+\sum\limits_{j = 1}^{n}{f\left( -n{{x}_{j}}+\sum\limits_{i = 1,i\ne j}^{n}{{{x}_{i}}} \right)}& = \left( {{n}^{2}}+2n+1 \right)\sum\limits_{i = 1,i\ne j\ne k}^{n}{f\left( {{x}_{i}}+{{x}_{j}}+{{x}_{k}} \right)}\\ &-\frac{1}{2}\left( 3{{n}^{3}}-2{{n}^{2}}-13n-8 \right)\sum\limits_{i = 1,i\ne j}^{n}{f\left( {{x}_{i}}+{{x}_{j}} \right)} \\ & +\frac{1}{2}\left( {{n}^{3}}+2{{n}^{2}}+n \right)\sum\limits_{i = 1,i\ne j}^{n}{f\left( {{x}_{i}}-{{x}_{j}} \right)}\\ &+\frac{1}{2}\left( 3{{n}^{4}}-5{{n}^{3}}-7{{n}^{2}}+13n+12 \right)\sum\limits_{i = 1}^{n}{f\left( {{x}_{i}} \right)} \\ \end{align*} $ $\left(n\in \mathbb{N}, \, \, n > 4 \right)$ and also investigate the Hyers-Ulam stability of the quartic functional equation in random normed spaces using the direct approach and the fixed point approach.


    加载中


    [1] H. Azadi Kenary, RNS-Approximately nonlinear additive functional equations, J. Math. Extension, 6 (2012), 11-20.
    [2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.
    [3] R. Chugh, Ashish, On the stability of functional equations in random normed spaces, Int. J. Comput. Appl., 45 (2012), 25-34.
    [4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64. doi: 10.1007/BF02941618
    [5] M. E. Gordji, J. M. Rassias, M. B. Savadkouhi, Approximation of the quadratic and cubic functional equation in RN-spaces, Eur. J. Pure. Appl. Math., 2 (2009), 494-507.
    [6] V. Govindan, C. Park, S. Pinelas, S. Baskaran, Solution of a 3-D cubic functional equation and its stability, AIMS Mathematics, 5 (2020), 1693-1705. doi: 10.3934/math.2020114
    [7] D. H. Hyers, On the stability of the linear functional equation, P. Nat. Acad. Sci. USA, 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222
    [8] D. H. Hyers, Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125- 153. doi: 10.1007/BF01830975
    [9] S. Jin, Y. Lee, On the stability of the functional equation deriving from quadratic and additive function in random normed spaces via fixed point method, J. Chungcheong Math. Soc., 25 (2012), 51-63. doi: 10.14403/jcms.2012.25.1.051
    [10] K. Jun, Y. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Math. Inequal. Appl., 4 (2001), 93-118.
    [11] S. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126-137. doi: 10.1006/jmaa.1998.5916
    [12] S. Jung, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl., 232 (1999), 384-393. doi: 10.1006/jmaa.1999.6282
    [13] S. Jung, D. Popa, M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 13-16.
    [14] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372.
    [15] R. Lather, K. Dhingra, Stability of quartic functional equation in random 2-normed spaces, Int. J. Comput. Appl., 147 (2016), 39-42.
    [16] J. Lee, C. Park, S. Pinelas, V. Govindan, K. Tamilvanan, G. Kokila, Stability of a sexvigintic functional equation, Nonlinear Funct. Anal. Appl., 24 (2019), 293-325.
    [17] Y. Lee, S. Jung, M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubicquadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61.
    [18] D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572. doi: 10.1016/j.jmaa.2008.01.100
    [19] D. Mihet, R. Saadati, S. M. Vaezpour, The stability of the quartic functional equation in random normed space, Acta. Appl. Math., 110 (2010), 799-803.
    [20] A. Najati, M. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415. doi: 10.1016/j.jmaa.2007.03.104
    [21] J. M. Rassias, R. Saadati, G. Sadeghi, J. Vahidi, On nonlinear stability in various random normed spaces, J. Inequal. Appl., 2011 (2011), 62. doi: 10.1186/1029-242X-2011-62
    [22] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, P. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [23] R. Saadati, S. M. Vaezpour, Y. Cho, A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces", J. Inequal. Appl., 2009 (2009), 214530.
    [24] F. Skof, Proprietè locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129. doi: 10.1007/BF02924890
    [25] S. M. Ulam, Problems in modern mathematics, New York: Wiley, 1964.
    [26] J. Vanterler da C. Sousa, E. C. de Oliveira, F. G. Rodrigues, Ulam-Hyers stabilities of fractional functional differential equations, AIMS Mathematics, 5 (2020), 1346-1358. doi: 10.3934/math.2020092
    [27] T. Z. Xu, J. M. Rassias, W. X. Xu, On stability of a general mixed additive-cubic functional equation in random normed spaces, J. Inequl. Appl., 2010 (2010), 328473. doi: 10.1155/2010/328473
    [28] S. Zhang, J. M. Rassias, R. Saadati, Stability of a cubic functional equation in intuitionistic random normed spaces, Appl. Math. Mech. Engl. Ed., 31 (2010), 21-26. doi: 10.1007/s10483-010-0103-6
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2777) PDF downloads(145) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog