Citation: Jie Liu, Zhaojie Zhou. Finite element approximation of time fractional optimal control problem with integral state constraint[J]. AIMS Mathematics, 2021, 6(1): 979-997. doi: 10.3934/math.2021059
[1] | Elvis Ishimwe, Richard A. Coffman, Kyle M. Rollins . Predicting blast-induced liquefaction within the New Madrid Seismic Zone. AIMS Geosciences, 2020, 6(1): 71-91. doi: 10.3934/geosci.2020006 |
[2] | Mahabir Barak, Manjeet Kumari, Manjeet Kumar . Effect of Hydrological Properties on the Energy Shares of Reflected Waves at the Surface of a Partially Saturated Porous Solid. AIMS Geosciences, 2017, 3(1): 67-90. doi: 10.3934/geosci.2017.1.67 |
[3] | António Viana da Fonseca, Cristiana Ferreira, Catarina Ramos, Fausto Molina-Gómez . The geotechnical test site in the greater Lisbon area for liquefaction characterisation and sample quality control of cohesionless soils. AIMS Geosciences, 2019, 5(2): 325-343. doi: 10.3934/geosci.2019.2.325 |
[4] | Kimon Kardakaris, Dimitrios N Konispoliatis, Takvor H Soukissian . Theoretical evaluation of the power efficiency of a moored hybrid floating platform for wind and wave energy production in the Greek seas. AIMS Geosciences, 2023, 9(1): 153-183. doi: 10.3934/geosci.2023009 |
[5] | Annika Bihs, Mike Long, Steinar Nordal . Geotechnical characterization of Halsen-Stjørdal silt, Norway. AIMS Geosciences, 2020, 6(3): 355-377. doi: 10.3934/geosci.2020020 |
[6] | Øyvind Blaker, Roselyn Carroll, Priscilla Paniagua, Don J. DeGroot, Jean-Sebastien L'Heureux . Halden research site: geotechnical characterization of a post glacial silt. AIMS Geosciences, 2019, 5(2): 184-234. doi: 10.3934/geosci.2019.2.184 |
[7] | Jubert A. Pineda, Richard B. Kelly, Laxmi Suwal, Lachlan Bates, Scott W. Sloan . The Ballina soft soil Field Testing Facility. AIMS Geosciences, 2019, 5(3): 509-534. doi: 10.3934/geosci.2019.3.509 |
[8] | Joseph J. Kelly, Christopher I. McDermott . Numerical modelling of a deep closed-loop geothermal system: evaluating the Eavor-Loop. AIMS Geosciences, 2022, 8(2): 175-212. doi: 10.3934/geosci.2022011 |
[9] | Aleksander S. Gundersen, Ragnhild C. Hansen, Tom Lunne, Jean-Sebastien L’Heureux, Stein O. Strandvik . Characterization and engineering properties of the NGTS Onsøy soft clay site. AIMS Geosciences, 2019, 5(3): 665-703. doi: 10.3934/geosci.2019.3.665 |
[10] | M.C. Raghucharan, Surendra Nadh Somala . Stochastic Extended Simulation (EXSIM) of Mw 7.0 Kumamoto-Shi earthquake on 15 April 2016 in the Southwest of Japan using the SCEC Broadband Platform (BBP). AIMS Geosciences, 2018, 4(2): 144-165. doi: 10.3934/geosci.2018.2.144 |
In this paper, we are concerned with the following sub-Laplacian system with Sobolev-Hardy critical nonlinearities on Carnot group G:
{−ΔGu−μ1ψ2ud(z)2=λ1ψα|u|2∗(α)−2ud(z)α+βp1f(z)ψγ|u|p1−2u|v|p2d(z)γin G,−ΔGv−μ2ψ2vd(z)2=λ2ψα|v|2∗(α)−2vd(z)α+βp2f(z)ψγ|u|p1|v|p2−2vd(z)γin G, | (1.1) |
where ΔG stands for the sub-Laplacian operator on Carnot group G, μ1, μ2∈[0,μG), α,γ∈(0,2), λ1, λ2, β are positive parameters, p1, p2>0 with 1<p1+p2<2, ψ=|∇Gd(z)|, ∇G denotes the horizontal gradient and d is the natural gauge associated with the fundamental solution of −ΔG on G. Here, μG=(Q−22)2 is the best Hardy constant and 2∗(α):=2(Q−α)Q−2 is the Sobolev-Hardy critical exponents, Q≥3 being the homogeneous dimension of the space G with respect to the dilation δγ. Moreover, the function f(z) satisfies the following assumption:
(f)f(z)∈Lp∗(G,ψγd(z)γdz) and the Lebesgue measure of set {z∈G:f(z)>0} is positive, where p∗=2∗(γ)2∗(γ)−(p1+p2), 0<γ<2.
Our goal is to prove, by means of variational methods, the existence of weak solutions to (1.1). We define the energy functional Iλ1,λ2,β associated to (1.1) as follows
Iλ1,λ2,β(u,v)=12∫G(|∇Gu|2+|∇Gv|2−μ1ψ2|u|2d(z)2−μ2ψ2|v|2d(z)2)dz−λ12∗(α)∫Gψα|u|2∗(α)d(z)αdz−λ22∗(α)∫Gψα|v|2∗(α)d(z)αdz−β∫Gf(z)ψγ|u|p1|v|p2d(z)γdz |
defined on the product space H:=S10(G)×S10(G), where the Folland-Stein space S10(G)={u∈L2∗(G):∫G|∇Gu|2dz<+∞} is the closure of C∞0(G) with respect to the norm
‖u‖S10(G)=(∫G|∇Gu|2dz)12. |
Here, 2∗=2QQ−2 is the Sobolev critical exponent. Further, we endow the product space H with the following norm
‖(u,v)‖H=(‖u‖2μ1+‖v‖2μ2)12, |
where
‖u‖2μi=∫G(|∇Gu|2−μiψ2|u|2d(z)2)dz,∀i=1,2. |
The above norm is well-defined due to the following Hardy-type inequality on Carnot group
μG∫Gψ2|u|2d(z)2dz≤∫G|∇Gu|2dz,∀u∈C∞0(G), | (1.2) |
where μG=(Q−22)2 is the optimal constant for (1.2). We can note that the norms ‖⋅‖μi and ‖⋅‖S10(G) for any μi<μG with i=1,2 are equivalent due to the Hardy's inequality (1.2).
The inequality (1.2) was first proved by Garofalo and Lanconelli in [1] for the Heisenberg group (see also [2]), and extended it to Carnot groups by D' Ambrosio, see [3]. In the Euclidean space setting, the weight function ψ appearing in the l.h.s. of (1.2) is constant, i.e., ψ≡1. So, (1.2) becomes the well-known Hardy inequality:
ˉμ∫RN|u|2|x|2dx≤∫RN|∇u|2dx,∀u∈C∞0(RN), |
where ˉμ=(N−22)2 is the best constant and it is never attained. In the Euclidean space, the existence and non-existence, as well as qualitative properties, of nontrivial weak solutions for p-Laplacian equations with singular potentials and critical exponents were recently studied by several authors, we refer, e.g., in bounded domains and for p=2 to [4,5,6,7,8], and for general p>1 to [9,10,11,12]; while in Rn and for p=2 to [13,14,15], and for general p>1 to [16,17,18], and for fractional (p,q)-Laplacian to [19], and the references therein. Moreover, a more interesting result can be found in [20], which studies the critical p-Laplace equation on the Heisenberg group with a Hardy-type term.
In recent years, people have paid much attention to the following singular sub-elliptic problem:
{−ΔGu−μψ2ud(z)2=f(z,u) in Ω,u=0 on ∂Ω, | (1.3) |
where Ω is a smooth bounded domain in Carnot group G, 0∈Ω. It should be mentioned that [21], by using Moser-type iteration, the author studied the asymptotic behavior of weak solutions to (1.3) when the function f satisfies the following condition:
|f(z,t)|≤C(|t|+|t|2∗−1)for all(z,t)∈Ω×R, |
and obtained the following asymptotic behavior at origin:
u(z)∼d(z)−(√μG−√μG−μ) as d(z)→0. |
Subsequently, in [22] also the behavior at infinity has been determined for the purely critical problem
−ΔGu−μψ2ud(z)2=|u|2∗−2uonG |
for which the asymptotic estimates at the origin and at infinity are then, respectively:
u(z)∼1d(z)a(μ) as d(z)→0,u(z)∼1d(z)b(μ) as d(z)→∞, |
where a(μ)=√μG−√μG−μ, b(μ)=√μG+√μG−μ and the notation f∼g means that there exists a constant C>0 such that 1Cg(z)≤f(z)≤Cg(z). From a technical point of view, these asymptotic estimates have a fundamental role in the study of the associated Brezis-Nirenberg type sub-elliptic problems on Carnot group. For more details on this topic, please refer to [22], which provides a detailed analysis of the Brezis-Nirenberg problem on Carnot group.
Motivated by the aforementioned articles and their results, we are interested in finding existence and multiplicity results for a system with critical Sobolev-Hardy critical terms. While dealing with the system (1.1), if we suppose μ1=μ2=μ, λ1=λ2=1 and β=0, problem (1.1) reduces to a sub-elliptic critical problem
−ΔGu−μψ2ud(z)2=ψα|u|2∗(α)−2ud(z)αinG. | (1.4) |
In 2015, Loiudice in the paper [23] proved the existence of ground state solutions of (1.4) using variational approach for μ=0 and 0<α<2, and obtained the asymptotic behavior of this solution at infinity. Recently, Zhang [24] proved the existence of ground state solutions of (1.4) 0<μ<μG and 0<α<2 and considered the following sub-elliptic system with critical Sobolev-Hardy nonlinearities on Carnot group
{−ΔGu−μψ2ud(z)2=ψα|u|2∗(α)−2ud(z)α+ληη+θψα|u|η−2u|v|θd(z)αinG,−ΔGv−μψ2vd(z)2=ψα|v|2∗(α)−2vd(z)α+λθη+θψα|u|η|v|θ−2vd(z)αinG, |
where α∈(0,2), λ>0 and η, θ>1. The existence of nontrivial solutions of the above sub-Laplacian system through variational methods was obtained for the critical case, i.e., η+θ=2∗(α). Other subelliptic problems with multiple critical exponents can be found in [25] and the references therein.
Let us recall that solutions of (1.4) arise as minimizers u∈S10(G) of the following Rayleigh quotient:
Sα,μ=infu∈S10(G)∖{0}∫G|∇Gu|2dz−μ∫Gψ2|u|2d(z)2dz(∫Gψα|u|2∗(α)d(z)αdz)22∗(α). |
Actually, up to a normalization, it holds that
∫G|∇Gu|2dz−μ∫Gψ2|u|2d(z)2dz=∫Gψα|u|2∗(α)d(z)αdz=(Sα,μ)Q−α2−α. | (1.5) |
Moreover, for any ε>0, rescaled functions uε(z)=ε−Q−22u(δ1ε(z)) are solutions, up to multiplicative constants, of the equation (1.4) and satisfy (1.5) too. However, the explicit form of ground state solutions is unknown, which is also the focus of our future work.
As a natural extension of the above papers, we are mainly interested in searching infinitely many solutions of singular sub-elliptic problem (1.1). Our point is here a combination of sub-Laplace operator and critical Sobolev-Hardy terms on the Carnot group. In the Euclidean elliptic setting, i.e., when G is the ordinary Euclidean space (RN,+), starting with the pioneering work of Kajikiya [26], established a critical point theorem related to the symmetric mountain pass lemma and applied it to find the existence of infinitely many solutions to elliptic equation. A large number of scholars have investigated the application of this method and achieved rich results, such as He-Zou [27], Baldelli-Filippucci [28], Liang-Zhang [29,30], Ambrosio-Isernia [19] and Liang-Shi [31] in this direction.
Motivated by the above results, our aim of this paper is to show the existence of infinitely many solutions of sub-elliptic problem (1.1), and that there exists a sequence of infinitely many arbitrarily small solutions converging to zero using the symmetric mountain-pass lemma due to Kajikiya [26]. To the best of our knowledge, there are only some results that deal with the sub-Laplacian problem with Sobolev-Hardy critical exponents and Hardy-type terms on the Carnot group.
Before stating our main result, let us recall the definition of weak solutions to (1.1).
Definition 1.1. We say that (u,v)∈H is a weak solutions of (1.1), if (u,v) satisfies
∫G∇Gu⋅∇Gϕ1dz+∫G∇Gv⋅∇Gϕ2dz−μ1∫Gψ2uϕ1d(z)2dz−μ2∫Gψ2vϕ2d(z)2dz−λ1∫Gψα|u|2∗(α)−2uϕ1d(z)αdz−λ2∫Gψα|v|2∗(α)−2vϕ2d(z)αdz−βp1∫Gf(z)ψγ|u|p1−2|v|p2uϕ1d(z)γdz−βp2∫Gf(z)ψγ|u|p1|v|p2−2vϕ2d(z)γdz=0 |
for all (ϕ1,ϕ2)∈H.
By Hardy-Sobolev inequality, it is clear that Iλ1,λ2,β is well-defined on H and belongs to C1(H,R). Then, from Definition 1.1 we see that any weak solution of (1.1) is just a critical point of Iλ1,λ2,β. Therefore, we are now in position to state our main result as follows.
Theorem 1.1. Assume that (f) holds, and 1<p1+p2<2, 0≤α<2, 0≤γ<2. Then
(i) for any β>0, there exists ˜λ>0 such that if 0<λ1<˜λ, 0<λ2<˜λ, problem (1.1) has a sequence of solutions {(un,vn)}⊂H with Iλ1,λ2,β(un,vn)<0 and Iλ1,λ2,β(un,vn)→0 as n→∞.
(ii) for any λ1, λ2>0, there exists ˜β>0 such that if 0<β<˜β, problem (1.1) has a sequence of solutions {(un,vn)}⊂H with Iλ1,λ2,β(un,vn)<0 and Iλ1,λ2,β(un,vn)→0 as n→∞.
Remark 1.1 Using the symmetric mountain pass lemma (see Theorem 2.1) we can conclude that the solutions obtained from Theorem 1.1 satisfy (un,vn)→(0,0) as n→∞.
The main idea to prove Theorem 1.1 is based on concentration-compactness result on the Carnot group and the symmetric mountain pass lemma [26]. One of the main difficulties to prove the existence and multiplicity of solutions of equation (1.1) using variational methods is that the energy functional does not satisfy the Palais-Smale condition for large energy levels, since the embedding S10(G)↪L2∗(α)(G,ψαd(z)αdz) is not compact. Another difficulty is that every nontrivial solution of (1.1) is singular at {z=0} due to the presence of the Hardy terms. Thus, different techniques are needed to deal with the singular case.
The rest of this paper is organized as follows. In Section 2, the variational setting and some preliminary are recalled. Finally, Section 3 contains several preliminary lemmas, including the crucial concentration-compactness lemma, as well as the proof of Theorem 1.1.
We devote this section to state some useful facts on the Carnot groups. For more details, we refer the reader to [32,33,34,35,36] and references therein.
A Carnot group (or Stratified group) (G,∘) is a connected, simply connected nilpotent Lie group, whose Lie algebra g admits a stratification, namely a decomposition g=⊕rk=1Vk with
[V1,Vk]=Vk+1for 1≤k≤r−1and[V1,Vr]={0}. |
Here, the integer r is called the step of G, dim(Vk)=Nk and the symbol [V1,Vk] denotes the subspace of g generated by the commutators [X,Y], where X∈V1 and Y∈Vk.
By means of the natural identification of G with its Lie algebra via the exponential map, it is not restrictive to suppose that G is a homogeneous group, i.e., Lie group equipped with a family {δγ}γ>0 of dilations, acting on z∈RN as follows
δγ(z(1),⋯,z(r))=(γ1z(1),γ2z(2),⋯,γrz(r)), |
where z(k)∈RNk for every k∈{1,⋯,r} and N=∑rk=1Nk. Then, the structure G:=(RN,∘,{δγ}γ>0) is called a homogeneous group with homogeneous dimension Q:=∑rk=1k⋅Nk. Note that the number Q is naturally associated to the family {δγ}γ>0 since, for every γ>0, the Jacobian of the map z↦δγ(z) equals γQ. Moreover, the number N:=∑rk=1Nk is called the topological dimension of G.
Now, let {X1,⋯,XN1} be any basis of V1, the sub-Laplacian on G is define as the second order differential operator
ΔG:=X21+X22+⋯+X2N1. |
The horizontal gradient on G is define as
∇G:=(X1,X2⋯,XN1). |
The horizontal divergence on G is define by
divGu=∇G⋅u. |
It is easy to check that ∇G and ΔG are left-translation invariant with respect to the group action τz and δγ-homogeneous, respectively, of degree one and two, that is, ∇G(u∘τz)=∇Gu∘τz, ∇G(u∘δγ)=γ∇Gu∘δγ; ΔG(u∘τz)=ΔGu∘τz and ΔG(u∘δγ)=γ2ΔGu∘δγ, where the left translation τz:G→G is defined by
τz(z′)=z∘z′,∀z,z′∈G. |
Let us now define the homogeneous norm Carnot group G.
Definition 2.1 A continuous function d:G→[0,+∞) is said to be a homogeneous norm on G if it satisfies the following condition:
(i) d(z)=0 if and only if z=0;
(ii) d(z−1)=d(z) for all z∈G;
(iii) d(δγ(z))=γd(z) for every γ>0 and z∈G.
Throughout this paper, we almost exclusively work with the homogeneous norm, which is related to the fundamental solution of the sub-Laplace operator −ΔG, that is the function d such that
Γ(z)=Cd(z)Q−2,∀z∈G |
is the fundamental solution of −ΔG with pole at 0, for a suitable constant C>0, see [22,33]. Moreover, if we define d(z1,z2):=d(z−12∘z1), then d is a pseudo-distence on G. In particular, d satisfies the pseudo-triangular inequality:
d(z1,z2)≤c(d(z1,z3)+d(z3,z2)),∀z1,z2,z3∈G |
for a suitable positive constant c. The ball of radius R>0 centered at z∈G with respect to the norm d, calling them d-balls, defined as
Bd(z,R)={y∈G:d(z,y)<R}. |
In fact, the norm on G can be induced by the Euclidean distance |⋅| on g through the exponential mapping, which also induces the homogeneous pseudo-norm |⋅|g on g, namely, for ξ∈g with ξ=ξ1+⋯+ξk, where ξi∈Vi, define a pseudo-norm on g as follows
|ξ|g=|(ξ1,⋯,ξk)|g:=(k∑i=1|ξi|2k!i)12k!. |
The induced norm on G has the form
|g|G=|exp−1G(g)|g,∀g∈G. |
The function |⋅|G is usually known as the non-isotropic gauge. It defines a pseudo-distence on G given by
d(g,h):=|h−1∘g|G,∀g,h∈G. |
The simplest example of a stratified Lie group is the Heisenberg group HN:=(R2N+1,∘) with the composition law as
(x,y,t)∘(x′,y′,t′):=(x1+x′1,⋯,xn+x′n,y1+y′1,⋯,yn+y′n,t+t′+2(⟨x′,y⟩−⟨x,y′⟩)), |
where (x,y,t),(x′,y,′t′)∈RN×RN×R1 and ⟨⋅,⋅⟩ represents the inner product on RN. The sub-Laplacian on HN is given by
ΔHN=N∑i=1(X2i+Y2i), |
where
Xi=∂∂xi+2yi∂∂t,Yi=∂∂yi−2xi∂∂tfori=1,2,⋯,N. |
In order to prove Theorem 1.1, we will recall some basic facts involved in the so-called Krasnoselskii genus, which can be found in [37,38].
For a symmetric group Z2={id,−id} and let E be a Banach space we set
Σ={A⊂E∖{0}:Ais closed and A=−A}. |
For any A∈Σ, the Krasnoselskii's genus of A is defined by
γ(A)=inf{k:∃ϕ∈C(A,Rk) ϕis oddandϕ(z)≠0}. |
If k does not exist, we set γ(A)=∞. By above definition, it is obvious that γ(∅)=0.
Let Σk denote the family of closed symmetric subsets A of E such that 0∉E and γ(A)≥k, that is,
Σk={A:A⊂Eis closed symmetric,0∉Eandγ(A)≥k}. |
Then we have the following result, see [26,37].
Proposition 2.1. Let A and B be closed symmetric subsets of E which do not contain the origin. Then the following statements hold:
(1) If there exists an odd continuous mapping from A to B, then γ(A)≤γ(B).
(2) If A⊂B, then γ(A)≤γ(B).
(3) If there is an odd homeomorphism from A to B, then γ(A)=γ(B).
(4) If γ(B)<∞, then γ¯(A∖B)≥γ(A)−γ(B).
(5) If Sn is a n-dimensional sphere, then γ(Sn)=n+1.
(6) If A is compact, then γ(A)<+∞ and there exists a δ-closed symmetric neighborhood of A, i.e., Nδ(A)={u∈E:dist(u,A)≤δ} such that Nδ(A)⊂Σk and γ(Nδ(A))=γ(A).
Now, we state the following variant of symmetric mountain-pass lemma due to Kajikiya [26].
Theorem 2.1. Let E be an infinite-dimensional Banach space, and let J∈C1(E,R) be a functional satisfying the conditions below:
(1) J(u) is even, bounded from below, J(0)=0 and J(u) satisfies the local Palais-Smale condition, i.e. for some ˉc>0, every sequence {un} in E satisfying limn→∞J(un)=c<ˉc and limn→∞‖J′(un)‖E′=0 has a convergent subsequence;
(2) For each k∈N, there exists Ak∈Σk such that supu∈AkJ(u)<0.
Then either (i) or (ii) below holds.
(i) There exists a sequence {un} such that J′(un)=0, J(un)<0 and {un} converges to zero as n→∞.
(ii) There exist two sequences {un} and {vn} such that J′(un)=0, J(un)=0, un≠0, limn→∞un=0; J′(vn)=0, J(vn)<0,limn→∞J(vn)=0, and {vn} converges to a non-zero limit.
In this section, we first discuss a compactness property for the energy functional Iλ1,λ2,β, given by the Palais-Smale condition.
Let c∈R, H be a Banach space and Iλ1,λ2,β∈C1(H,R). {(un,vn)}⊂H is a Palais-Smale sequence for Iλ1,λ2,β in H at level c, (PS)c-sequence for short, if
Iλ1,λ2,β(un,vn)→candI′λ1,λ2,β(un,vn)→0inH−1as n→∞. |
We say that Iλ1,λ2,β satisfies (PS)c-condition at level c if for any (PS)c-sequence {(un,vn)}⊂H for Iλ1,λ2,β has a convergent subsequence in H.
In order to apply Theorem 2.1, we need the following preliminary results for (PS)c-sequence of Iλ1,λ2,β.
Lemma 3.1. Suppose that 1<p:=p1+p2<2 and α,γ∈(0,2). Let {(un,vn)}⊂H be a (PS)c-sequence for Iλ1,λ2,β. Then, {(un,vn)} is bounded in H.
Proof. Let {(un,vn)}⊂H be a (PS)c-sequence for Iλ1,λ2,β, then
Iλ1,λ2,β(un,vn)=c+on(1)andI′λ1,λ2,β(un,vn)=on(1) in H−1asn→∞. |
By Young inequality and Hölder inequality, we have
∫Gf(z)ψγ|un|p1|vn|p2d(z)γdz≤p1p∫Gf(z)ψγ|un|pd(z)γdz+p2p∫Gf(z)ψγ|vn|pd(z)γdz≤p1p(∫G|f(z)|2∗(γ)2∗(γ)−pψ(z)γd(z)γdz)2∗(γ)−p2∗(γ)(∫Gψγ|un|2∗(γ)d(z)γdz)p2∗(γ)+p2p(∫G|f(z)|2∗(γ)2∗(γ)−pψ(z)γd(z)γdz)2∗(γ)−p2∗(γ)(∫Gψγ|vn|2∗(γ)d(z)γdz)p2∗(γ)≤‖f‖Lp∗(G,ψγd(z)γdz)(p1pS−p2γ,μ1‖un‖pμ1+p2pS−p2γ,μ2‖vn‖pμ2)≤‖f‖Lp∗(G,ψγd(z)γdz)(S−p2γ,μ1+S−p2γ,μ2)‖(un,vn)‖pH. |
Then,
on(1)+|c|+on(‖(un,vn)‖H)≥Iλ1,λ2,β(un)−12∗(α)⟨I′λ1,λ2,β(un,vn),(un,vn)⟩=(12−12∗(α))‖(un,vn)‖2H−β(1−p2∗(α))∫Gf(z)ψγ|un|p1|vn|p2d(z)γdz≥2−α2(Q−α)‖(un,vn)‖2H−β2∗(α)−p2∗(α)‖f‖Lp∗(G,ψγd(z)γdz)(S−p2γ,μ1+S−p2γ,μ2)‖un,vn‖pH, |
which implies that {(un,vn)} is bounded in H since p<2<2∗(α) and β>0.
Proposition 3.1. Let 1<p<2, α,γ∈(0,2) and let {(un,vn)}⊂H be a (PS)c-sequence of Iλ1,λ2,β with c<0. Then,
(i) for any λ1, λ2>0, there exists β∗>0 such that if 0<β<β∗, Iλ1,λ2,β satisfies (PS)c condition, where β∗ is independent on the sequence {(un,vn)};
(ii) for any β>0, there exists λ∗>0 such that is 0<λ1<λ∗, 0<λ2<λ∗, Iλ1,λ2,β satisfies (PS)c condition, where λ∗ is independent on the sequence {(un,vn)}.
Proof. Since the sequence {(un,vn)} is bounded in H, thanks to Lemma 3.1, then there exists (u0,v0)∈H such that, up to a subsequence, it follows that
(un,vn)⇀(u0,v0)weakly in H,(un,vn)⇀(u0,v0)weakly in [L2∗(α)(G,ψαd(z)αdz)]2,(un,vn)→(u0,v0)strongly in [Ltloc(G,ψγd(z)γdz)]2,∀t∈[1,2∗(γ)),(un(z),vn(z))→(u0(z),v0(z))a.e. in G. |
Then, by the concentration-compactness principle [39,40,41] and up to a subsequence if necessary, there exist positive finite Radon measure ˆμ, ˆν, ˆρ, ˉμ, ˉν, ˉρ∈R(G∪{∞}); at most countable set J and ˉJ; real numbers ˆμj, ˆνj(j∈J), ˉμk, ˉνk(k∈ˉJ), ˆμ0, ˆν0, ˆρ0, ˉμ0, ˉν0, ˉρ0 and different points zj∈G∖{0} (j∈J), ˉzk∈G∖{0} (k∈ˉJ) such that
|∇Gun|2dz⇀ˆμ≥|∇Gu0|2dz+∑j∈Jδzjˆμj+δ0ˆμ0, | (3.1) |
|∇Gvn|2dz⇀ˉμ≥|∇Gv0|2dz+∑k∈ˉJδˉzkˉμk+δ0ˉμ0, | (3.2) |
ψα|un|2∗(α)d(z)αdz⇀ˆν=ψα|u0|2∗(α)d(z)αdz+∑j∈Jδzjˆνj+δ0ˆν0, | (3.3) |
ψα|vn|2∗(α)d(z)αdz⇀ˉν=ψα|v0|2∗(α)d(z)αdz+∑k∈ˉJδˉzkˉνk+δ0ˉν0, | (3.4) |
ψ2|un|2d(z)2dz⇀ˆρ=ψ2|u0|2d(z)2dz+δ0ˆρ0, | (3.5) |
ψ2|vn|2d(z)2dz⇀ˉρ=ψ2|v0|2d(z)2dz+δ0ˉρ0, | (3.6) |
where δz is the Dirac mass at z. Moreover, by the Sobolev-Hardy and the Hardy inequalities, we get
ˆμj≥S(α,G)⋅ˆν22∗(α)j for all j∈J∪{0}, and ˆμ0≥μG⋅ˆρ0, | (3.7) |
ˉμk≥S(α,G)⋅ˉν22∗(α)k for all k∈ˉJ∪{0}, and ˉμ0≥μG⋅ˉρ0, | (3.8) |
where S(α,G) is the best Hardy-Sobolev constant, i.e.,
S(α,G)=infu∈S10(G)∖{0}∫G|∇Gu|2dz(∫Gψα|u|2∗(α)d(z)αdz)22∗(α). |
In order to study the concentration at infinity of {un} and {vn}, we use a method of concentration-compactness principle at infinity, which was first established by Chabrowski [42]. We set
μ∞:=limR→∞lim supn→∞∫G∩{d(z)>R}|∇Gun|2dz, | (3.9) |
ν∞:=limR→∞lim supn→∞∫G∩{d(z)>R}ψα|un|2∗(α)d(z)αdz, | (3.10) |
ρ∞:=limR→∞lim supn→∞∫G∩{d(z)>R}ψ2|un|2d(z)2dz, | (3.11) |
and
ˉμ∞:=limR→∞lim supn→∞∫G∩{d(z)>R}|∇Gvn|2dz,ˉν∞:=limR→∞lim supn→∞∫G∩{d(z)>R}ψα|vn|2∗(α)d(z)αdz,ˉρ∞:=limR→∞lim supn→∞∫G∩{d(z)>R}ψ2|vn|2d(z)2dz. |
For the sequence {un}, let ϕj(z)∈C∞0(G,[0,1]) be a cut-off function centered at zj∈G∖{0} with ϕj=1 on Bd(zj,1), ϕj=0 on G∖Bd(zj,2). Let ϕj,ε(z)=ϕj(δ1ε(z)). Then |∇Gϕj,ε|≤Cε and {ϕj,εun} is bounded in S10(G). Testing I′λ1,λ2,β(un,vn) with (ϕj,εun,0), we obtain limn→∞⟨I′λ1,λ2,β(un,vn),(ϕj,εun,0)⟩=0, that is,
limn→∞(∫G|∇Gun|2ϕj,εdz−μ1∫Gψ2|un|2ϕj,εd(z)2dz−λ1∫Gψα|un|2∗(α)ϕj,εd(z)αdz−βp1∫Gf(z)ψγ|un|p1ϕj,ε|vn|p2d(z)γdz)=limn→∞∫Gun∇Gun∇Gϕj,εdz. | (3.12) |
Now, we estimate each term in (3.12). From (3.1)–(3.6), we get
limn→∞∫G|∇Gun|2ϕj,εdz=∫Gϕj,εdˆμ≥∫G|∇Gu0|2ϕj,εdz+ˆμj, | (3.13) |
limn→∞∫Gψα|un|2∗(α)ϕj,εd(z)αdz=∫Gϕj,εdˆν=∫Gψα|u0|2∗(α)ϕj,εd(z)αdz+ˆνj, | (3.14) |
limε→0limn→∞|∫Gψ2|un|2ϕj,εd(z)2dz|≤limε→0limn→∞∫Bd(zj,2ε)ψ2|un|2d(z)2dz=0, | (3.15) |
and
limε→0limn→∞∫Gf(z)ψγ|un|p1ϕj,ε|vn|p2d(z)γdz≤limε→0limn→∞∫Bd(zj,2ε)f(z)ψγ|un|p1ϕj,ε|vn|p2d(z)γdz≤limε→0limn→∞‖f‖Lp∗(Bd(zj,2ε),ψγd(z)γdz)[(∫Bd(zj,2ε)ψγ|un|2∗(γ)d(z)γdz)p2∗(γ)+(∫Bd(zj,2ε)ψγ|vn|2∗(γ)d(z)γdz)p2∗(γ)]=0. | (3.16) |
From Hölder inequality, it follows that
0≤limε→0limn→∞|∫Gun∇Gun∇Gϕj,εdz|≤limε→0limn→∞(∫G|∇Gun|2dz)12(∫G|∇Gϕj,ε|2|un|2dz)12≤Climε→0(∫G|∇Gϕj,ε|2|u0|2dz)12≤Climε→0(∫Bd(zj,2ε)|∇Gϕj,ε|Qdz)1Q(∫Bd(zj,2ε)|u0|2∗dz)12∗≤Climε→0(∫Bd(zj,2ε)|u0|2∗dz)12∗=0. | (3.17) |
Consequently, from the above arguments (3.13)–(3.17), we get
0=limε→0⟨I′λ1,λ2,β(un,vn),(ϕεun,0)⟩≥ˆμj−λ1ˆνj,∀j∈J. |
Combining with (3.7), we have
either(1)ˆνj=0,or(2)ˆνj≥(S(α,G)λ1)Q−α2−α, |
which implies that the set J is finite.
Similarly, for ˉνk and ˉJ, the following conclusion holds:
ˉJis finite, and either(1)′ˉνk=0,or(2)′ˉνk≥(S(α,G)λ2)Q−α2−αfork∈ˉJ. |
On the other hand, choosing a suitable cutoff function centered at the origin, by the analogous argument we can prove that
ˆμ0−μ1ˆρ0≤λ1ˆν0 and ˉμ0−μ1ˉρ0≤λ1ˉν0. | (3.18) |
It follows from the definition of Sα,μ1 and Sα,μ2 that
ˆμ0−μ1ˆρ0≥Sα,μ1⋅ˆν22∗(α)0 | (3.19) |
ˉμ0−μ2ˉρ0≥Sα,μ2⋅ˉν22∗(α)0. | (3.20) |
Thus, by combining (3.18) and (3.19), (3.20) we get
either(3)ˆν0=0,or(4)ˆν0≥(Sα,μ1λ1)Q−α2−α | (3.21) |
and
either(3)′ˉν0=0,or(4)′ˉν0≥(Sα,μ2λ2)Q−α2−α. | (3.22) |
Furthermore, the Hardy inequality (1.2) implies that
0≤μGˆρ0≤ˆμ0,0≤(1−μ1μG)ˆμ0≤ˆμ0−μ1ˆρ0, | (3.23) |
and
0≤μGˉρ0≤ˉμ0,0≤(1−μ2μG)ˉμ0≤ˉμ0−μ2ˉρ0. | (3.24) |
If ˆν0=0, from (3.18) and (3.23), it follows that ˆμ0=ˆρ0=0. Similarly, if ˉν0=0, by (3.18) and (3.24), we conclude ˉμ0=ˉρ0=0.
To analyze the concentration at infinity, for R>0, we choose the function ϕ∈C∞1(G) such that 0≤ϕ≤1, ϕ(z)=0 on Bd(0,1), ϕ(z)=1 on G∖Bd(0,2) and |∇Gϕ|≤cR. Set ϕR(z)=ϕ(δ1R(z)), then {ϕRun}⊂S10(G) is bounded. Testing I′λ1,λ2,β(un,vn) with (ϕRun,0) we obtain limn→∞⟨I′λ1,λ2,β(un,vn),(ϕRun,0)⟩=0, i.e.,
−limn→∞∫G⟨∇Gun,∇GϕR⟩undz=limn→∞[∫G(|∇Gun|2ϕR−μ1ψ2|un|2d(z)2ϕR)dz−λ1∫Gψα|un|2∗(α)d(z)αϕRdz−βp1∫Gf(z)ψγ|un|p1|vn|p2d(z)γϕRdz]. | (3.25) |
Since
Sα,μ1(∫Gψα|unϕR|2∗(α)d(z)αdz)22∗(α)≤∫G(|∇G(unϕR)|2−μ1ψ2|unϕR|2d(z)2)dz, |
we conclude that
\begin{equation} \begin{aligned} &\mu_{1}\int_{\mathbb{G}} \frac{\psi^{2}|u_{n}\phi_{R}|^{2}}{\text{d}(z)^{2}}dz + S_{\alpha,\mu_{1}}\left(\int_{\mathbb{G}} \frac{\psi^{\alpha}|u_{n}\phi_{R}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz\right)^{\frac{2}{2^*(\alpha)}}\\ &\leq \int_{\mathbb{G}}|\nabla_{\mathbb{G}}(u_{n}\phi_{R})|^{2}dz\\ &\leq\int_{\mathbb{G}}|\nabla_{\mathbb{G}}u_{n}|^{2}|\phi_{R}|^{2}dz +\int_{\mathbb{G}}|\nabla_{\mathbb{G}}\phi_{R}|^{2}|u_{n}|^{2}dz +2\int_{\mathbb{G}}|\nabla_{\mathbb{G}}u_{n}\phi_{R}u_{n}\nabla_{\mathbb{G}}\phi_{R}|dz. \end{aligned} \end{equation} | (3.26) |
By Hölder inequality, it is easy to get that
\begin{equation} \begin{aligned} \lim\limits_{R\to \infty}&\limsup\limits_{n\to \infty} \int_{\mathbb{G}}|\phi_{R}\nabla_{\mathbb{G}} u_{n}| |u_{n} \nabla_{\mathbb{G}}\phi_{R}|dz\\ &\leq \lim\limits_{R\to \infty}\limsup\limits_{n\to \infty} \Big(\int_{B_{\text{d}}(0,2R)\backslash B_{\text{d}}(0,R)} |\nabla_{\mathbb{G}} u_{n}|^{2}dz\Big)^{\frac{1}{2}} \Big(\int_{B_{\text{d}}(0,2R)\backslash B_{\text{d}}(0,R)}|u_{n}\nabla_{\mathbb{G}}\phi_{R}|^{2}dz\Big)^{\frac{1}{2}}\\ &\leq C \lim\limits_{R\to \infty} \Big(\int_{B_{\text{d}}(0,2R)\backslash B_{\text{d}}(0,R)} |\nabla_{\mathbb{G}}\phi_{R}|^{2} |u_{0}|^{2}dz\Big)^{\frac{1}{2}}\\ &\leq C\lim\limits_{R\to \infty} \Big(\int_{B_{\text{d}}(0,2R)\backslash B_{d}(0,R)} |\nabla_{\mathbb{G}}\phi_{\varepsilon}|^{Q}dz\Big)^{\frac{1}{Q}} \Big(\int_{B_{\text{d}}(0,2)\backslash B_{\text{d}}(0,R)} |u_{0}|^{2^*}dz\Big)^{\frac{1}{2^*}}\\ &\leq C\lim\limits_{R\to \infty} \Big(\int_{B_{\text{d}}(0,2R)\backslash B_{\text{d}}(0,R)} |u_{0}|^{2^*}dz\Big)^{\frac{1}{2^*}} = 0. \end{aligned} \end{equation} | (3.27) |
Similarly,
\begin{equation} \lim\limits_{R\to \infty}\limsup\limits_{n\to \infty} \int_{\mathbb{G}}|\nabla_{\mathbb{G}}\phi_{R}|^{2}| u_{n}|^{2}dz = 0. \end{equation} | (3.28) |
Thus, we see from(3.27), (3.28) and (3.26), we have
\begin{equation} \mu_{\infty}-\mu_{1}\rho_{\infty}\geq S_{\alpha,\mu_{1}}\cdot \nu_{\infty}^{\frac{2}{2^*(\alpha)}}. \end{equation} | (3.29) |
On the other hand, from Hölder inequality and the definition of \phi_{R} we have
\begin{align*} \label{eq3-31} &\left|\int_{\mathbb{G}}f(z) \frac{\psi^{\gamma}|u_{n}|^{p_{1}}|v_{n}|^{p_{2}}}{\text{d}(z)^{\gamma}}\phi_{R}dz\right|\nonumber\\ &\leq\left|\int_{\mathbb{G}\backslash B_{\text{d}}(0,R)}f(z) \frac{\psi^{\gamma}|u_{n}|^{p}}{\text{d}(z)^{\gamma}}\phi_{R}dz\right| + \left|\int_{\mathbb{G}\backslash B_{\text{d}}(0,R)}f(z) \frac{\psi^{\gamma}|v_{n}|^{p}}{\text{d}(z)^{\gamma}}\phi_{R}dz\right|\nonumber\\ &\leq \left(\int_{\mathbb{G}\backslash B_{\text{d}}(0,R)}\frac{\psi^{\gamma}|f(z)|^{\frac{2^*(\gamma)}{2^*(\gamma)-p}}}{\text{d}(z)^{\gamma}}dz\right)^{\frac{2^*(\gamma)-p}{2^*(\gamma)}}\left[ \left(\int_{\mathbb{G}\backslash B_{\text{d}}(0,R)} \frac{\psi^{\gamma}|u_{n}|^{2^*(\gamma)}}{\text{d}(z)^{\gamma}}\phi_{R}dz\right)^{\frac{p}{2^*(\gamma)}}\right.\nonumber\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\left.+ \left(\int_{\mathbb{G}\backslash B_{\text{d}}(0,R)} \frac{\psi^{\gamma}|v_{n}|^{2^*(\gamma)}}{\text{d}(z)^{\gamma}}\phi_{R}dz\right)^{\frac{p}{2^*(\gamma)}}\right]\nonumber\\ &\leq \left(\int_{\mathbb{G}\backslash B_{\text{d}}(0,R)}\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}|f(z)|^{\frac{2^*(\gamma)}{2^*(\gamma)-p}}dz\right)^{\frac{2^*(\gamma)-p}{2^*(\gamma)}}\left[ S_{\gamma,\mu_{1}}^{-\frac{p}{2}}\|u_{n}\|^{p}_{\mu_{2}}+ S_{\gamma,\mu_{1}}^{-\frac{p}{2}}\|u_{n}\|^{p}_{\mu_{2}}\right]. \end{align*} |
Since f\in L^{p_{*}}(\mathbb{G}, \frac{\psi^{\gamma}}{d(z)^{\gamma}}dz) , it follows that
\begin{equation*} \label{eq3-32} \begin{aligned} \lim\limits_{R\to \infty}&\limsup\limits_{n\to \infty}\left|\int_{\mathbb{G}}f(z) \frac{\psi^{\gamma}|u_{n}|^{p_{1}}|v_{n}|^{p_{2}}} {\text{d}(z)^{\gamma}}\phi_{R}dz\right| \leq \lim\limits_{R\to \infty}C \left(\int_{\mathbb{G}\backslash B_{\text{d}}(0,R)} \frac{\psi^{\gamma}|f(z)|^{\frac{2^*(\gamma)}{2^*(\gamma)-p}}} {\text{d}(z)^{\gamma}}dz\right)^{\frac{2^*(\gamma)-p}{2^*(\gamma)}} = 0. \end{aligned} \end{equation*} |
Thus, taking limits by letting n\to \infty in (3.25), we have
\begin{equation} \mu_{\infty}-\mu_{1}\rho_{\infty}\leq \lambda_{1} \nu_{\infty}. \end{equation} | (3.30) |
Hence, it follows from (3.29) and (3.30) that
\begin{equation*} \label{eq3-34} \text{either}\,\,\, (5)\,\,\nu_{\infty} = 0,\,\,\,\text{or} \,\,\, (6)\,\, \nu_{\infty}\geq \Big(\frac{S_{\alpha,\mu_{1}}}{\lambda_{1}}\Big)^{\frac{Q-\alpha}{2-\alpha}}. \end{equation*} |
In contrast, the Hardy inequality implies that
\begin{equation} 0\leq \mu_{\mathbb{G}}\rho_{\infty}\leq \mu_{\infty},\qquad 0\leq \Big(1-\frac{\mu_{1}}{\mu_{\mathbb{G}}}\Big)\mu_{\infty}\leq \mu_{\infty}-\mu_{1}\rho_{\infty}. \end{equation} | (3.31) |
If \nu_{\infty} = 0 , by combining (3.30) and (3.31), we get \mu_{\infty} = \rho_{\infty} = 0 .
From above argument the same conclusion holds for \bar{\nu}_{\infty} , namely,
\begin{equation*} \label{eq3-36} \bar{\mu}_{\infty}-\mu_{2}\bar{\rho}_{\infty}\geq S_{\alpha,\mu_{2}}\cdot \bar{\nu}_{\infty}^{\frac{2}{2^*(\alpha)}}, \end{equation*} |
\begin{equation*} \label{eq3-37} \bar{\mu}_{\infty}-\mu_{1}\bar{\rho}_{\infty}\leq \lambda_{2} \bar{\nu}_{\infty}, \end{equation*} |
and
\begin{equation*} \label{eq3-38} \text{either}\,\,\, (5)'\,\,\bar{\nu}_{\infty} = 0,\,\,\,\text{or} \,\,\, (6)'\,\, \bar{\nu}_{\infty}\geq \Big(\frac{S_{\alpha,\mu_{2}}}{\lambda_{2}}\Big)^{\frac{Q-\alpha}{2-\alpha}}. \end{equation*} |
If \bar{\nu}_{\infty} = 0 , we have that \bar{\mu}_{\infty} = \bar{\rho}_{\infty} = 0 .
Now we claim that (2) , (2)' , (4) , (4)' and (6) , (6)' cannot occur if \lambda_{1} , \lambda_{2} and \beta are chosen properly. In fact, applying (f) and Hölder inequality, we have
\begin{equation} \begin{aligned} 0 > c & = \lim\limits_{n\to \infty}(I_{\lambda_{1},\lambda_{2},\beta}(u_n,v_{n})- \frac{1}{2^*(\alpha)}\langle I'_{\lambda_{1},\lambda_{2},\beta}(u_n,v_{n}),(u_n,v_{n})\rangle)\\ & = \lim\limits_{n\to \infty}\left(\Big(\frac{1}{2}-\frac{1}{2^*(\alpha)}\Big) \|(u_n,v_{n})\|^{2}_{\mathcal{H}}-\beta\Big(1-\frac{p}{2^*(\alpha)}\Big) \int_{\mathbb{G}}f(z)\frac{\psi^{\gamma}|u_{n}|^{p_{1}}|v_{n}|^{p_{2}}}{\text{d}(z)^{\gamma}}dz\right)\\ &\geq \frac{2^*(\alpha)-2}{2 \cdot2^*(\alpha)}\|(u_{0},v_{0})\|^{2}_{\mathcal{H}}\\ &\quad- \frac{\beta(2^*(\alpha)-p)}{2^*(\alpha)}\|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} \Big(\|u_{0}\|^{p}_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}+\|v_{0}\|^{p}_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}\Big)\\ &\geq \frac{2^*(\alpha)-2}{2\cdot 2^*(\alpha)} \Big(S_{\gamma,\mu_{1}}\|u_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}^{2} +S_{\gamma,\mu_{2}}\|v_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}^{2}\Big)\\ &\quad- \frac{\beta(2^*(\alpha)-p)}{2^*(\alpha)} \|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} \Big(\|u_{0}\|^{p}_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} +\|v_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}^{p}\Big).\\ \end{aligned} \end{equation} | (3.32) |
Since
\|u_{0}\|^{p}_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} +\|v_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}^{p}\leq 2\left(\|u_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} +\|v_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}\right)^{p}, |
\|u_{0}\|^{2}_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} +\|v_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}^{2}\geq \frac{1}{2} \left(\|u_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} +\|v_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}\right)^{2}, |
which and (3.32) yield that
\begin{equation*} \label{eq3-40} \begin{aligned} &\frac{2\beta(2^*(\alpha)-p)}{2^*(\alpha)} \|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} \Big(\|u_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}+\|v_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}\Big)^{p}\\ &\quad \geq \frac{2^*(\alpha)-2}{4 \cdot 2^*(\alpha)} \min\{S_{\gamma,\mu_{1}},S_{\gamma,\mu_{2}}\} \Big(\|u_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} +\|v_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}\Big)^{2}, \end{aligned} \end{equation*} |
namely,
\begin{equation} \|u_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} +\|v_{0}\|_{L^{2^*{(\gamma)}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} \leq \left(\frac{8(2^*(\alpha)-p)\|f\|_{L^{p_{*}}(\mathbb{G}, \frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)}} {(2^*(\alpha)-2)\min\{S_{\gamma,\mu_{2}},S_{\gamma,\mu_{2}}\}} \right)^{\frac{1}{2-p}}\,\beta^{\frac{1}{2-p}}. \end{equation} | (3.33) |
If (6) or (6)' occurs, we obtain by (3.32) and (3.33) that
\begin{align*} 0& > c = \lim\limits_{n\to \infty}\Big(I_{\lambda_{1},\lambda_{2},\beta}(u_{n},v_{n})- \frac{1}{2^*(\alpha)} \langle I'_{\lambda_{1},\lambda_{2},\beta}(u_{n},v_{n}),(u_{n},v_{n})\rangle\Big)\\ &\geq \frac{2^*(\alpha)-2}{2\cdot 2^*(\alpha)} \Big(\mu_{\infty}-\mu_{1}\rho_{\infty} +\bar{\mu}_{\infty}-\mu_{2}\bar{\rho}_{\infty}\Big)\\ &-\frac{2}{2^*(\alpha)} \left(\frac{8}{(2^*(\alpha)-2)\min\{S_{\gamma,\mu_{1}},S_{\gamma,\mu_{2}}\}}\right)^{\frac{p}{2-p}} \left((2^*(\alpha)-p)\|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} \right)^{\frac{2}{2-p}}\cdot\beta^{\frac{2}{2-p}}\\ &\geq \frac{2^*(\alpha)-2}{2\cdot 2^*(\alpha)} \Big(S_{\alpha,\mu_{1}}\nu_{\infty}^{\frac{2}{2^*(\alpha)}} +S_{\alpha,\mu_{2}}\bar{\nu}_{\infty}^{\frac{2}{2^*(\alpha)}}\Big)\\ &-\frac{2}{2^*(\alpha)} \left(\frac{8}{(2^*(\alpha)-2)\min\{S_{\gamma,\mu_{1}},S_{\gamma,\mu_{2}}\}}\right)^{\frac{p}{2-p}} \left((2^*(\alpha)-p)\|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} \right)^{\frac{2}{2-p}}\cdot\beta^{\frac{2}{2-p}}\\ &\geq \frac{2^*(\alpha)-2}{2\cdot 2^*(\alpha)} \left(S_{\alpha,\mu_{1}} \Big[\Big(\frac{S_{\alpha,\mu_{1}}}{\lambda_{1}}\Big)^{\frac{Q-\alpha}{2-\alpha}}\Big]^{\frac{2}{2^*(\alpha)}}+ S_{\alpha,\mu_{2}} \Big[\Big(\frac{S_{\alpha,\mu_{2}}}{\lambda_{2}}\Big)^{\frac{Q-\alpha}{2-\alpha}}\Big]^{\frac{2}{2^*(\alpha)}}\right)\\ &-\frac{2}{2^*(\alpha)} \left(\frac{8}{(2^*(\alpha)-2)\min\{S_{\gamma,\mu_{1}},S_{\gamma,\mu_{2}}\}}\right)^{\frac{p}{2-p}} \left((2^*(\alpha)-p)\|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} \right)^{\frac{2}{2-p}}\cdot\beta^{\frac{2}{2-p}}\\ & = \frac{2^*(\alpha)-2}{2\cdot 2^*(\alpha)} \left((S_{\alpha,\mu_{1}})^{\frac{Q-\alpha}{2-\alpha}} \lambda_{1}^{-\frac{Q-2}{2-\alpha}}+ (S_{\alpha,\mu_{2}})^{\frac{Q-\alpha}{2-\alpha}} \lambda_{2}^{-\frac{Q-2}{2-\alpha}}\right)\\ &-\frac{2}{2^*(\alpha)} \left(\frac{8}{(2^*(\alpha)-2)\min\{S_{\gamma,\mu_{1}},S_{\gamma,\mu_{2}}\}}\right)^{\frac{p}{2-p}} \left((2^*(\alpha)-p)\|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} \right)^{\frac{2}{2-p}}\cdot\beta^{\frac{2}{2-p}}, \end{align*} |
that is,
\begin{equation} \begin{aligned} 0 > &\frac{2^*(\alpha)-2}{2\cdot 2^*(\alpha)} \left((S_{\alpha,\mu_{1}})^{\frac{Q-\alpha}{2-\alpha}} \lambda_{1}^{-\frac{Q-2}{2-\alpha}}+ (S_{\alpha,\mu_{2}})^{\frac{Q-\alpha}{2-\alpha}} \lambda_{2}^{-\frac{Q-2}{2-\alpha}}\right)\\ &-\frac{2}{2^*(\alpha)} \left(\frac{8}{(2^*(\alpha)-2)\min\{S_{\gamma,\mu_{1}},S_{\gamma,\mu_{2}}\}}\right)^{\frac{p}{2-p}} \left((2^*(\alpha)-p)\|f\|_{L^{p_{*}}{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} \right)^{\frac{2}{2-p}}\cdot\beta^{\frac{2}{2-p}}. \end{aligned} \end{equation} | (3.34) |
From the above inequality, we can find that if \beta > 0 is given, there exists \lambda_{*} > 0 small enough such that for \lambda_{1}, \, \lambda_{2}\in (0, \lambda_{*}) , the right-hand side of (3.34) is greater than 0 , which is a contradiction. Similarly, if \lambda_{1}, \, \lambda_{2} > 0 is given, we can take \beta_{*} > 0 so small that for \beta\in (0, \beta_{*}) , right-hand side of (3.34) is greater than 0 .
Similarly we can prove that (2) , (2)' and (4) , (4)' cannot occur. So
\begin{equation*} \lim\limits_{n\to \infty}\int_{\mathbb{G}}\frac{\psi^{\alpha}|u_{n}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz = \int_{\mathbb{G}}\frac{\psi^{\alpha}|u_{0}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz \end{equation*} |
and
\begin{equation*} \lim\limits_{n\to \infty}\int_{\mathbb{G}}\frac{\psi^{\alpha}|v_{n}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz = \int_{\mathbb{G}}\frac{\psi^{\alpha}|v_{0}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz. \end{equation*} |
In view of (u_{n}, v_{n})\rightharpoonup (u_{0}, v_{0 }) weakly in \mathcal{H} and the Brezis-Lieb lemma [38], we have
\begin{equation*} \label{eq3-43} \lim\limits_{n\to \infty}\int_{\mathbb{G}} \frac{\psi^{\alpha}|u_{n}-u_{0}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz = 0, \qquad \lim\limits_{n\to \infty}\int_{\mathbb{G}} \frac{\psi^{\alpha}|v_{n}-v_{0}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz = 0. \end{equation*} |
We are now going to prove that (u_{n}, v_{n})\to (u_{0}, v_{0}) strongly in \mathcal{H} . First, we have
\begin{equation} \begin{aligned} \|(u_{n}-u_{0},v_{n}-v_{0})\|_{\mathcal{H}}^{2} & = \langle (I'_{\lambda_{1},\lambda_{2},\beta}(u_{n},v_{n}) -I'_{\lambda_{1},\lambda_{2},\beta}(u_{0},v_{0})),(u_{n}-u_{0},v_{n}-v_{0})\rangle\\ &+\lambda_{1} \int_{\mathbb{G}} \frac{\psi^{\alpha}(|u_{n}|^{2^*(\alpha)-2}u_{n}-|u_{0}|^{2^*(\alpha)-2}u_{0})(u_{n}-u_{0})} {\text{d}(z)^{\alpha}}dz\\ &+\lambda_{2} \int_{\mathbb{G}} \frac{\psi^{\alpha}(|v_{n}|^{2^*(\alpha)-2}v_{n}-|v_{0}|^{2^*(\alpha)-2}v_{0})(v_{n}-v_{0})} {\text{d}(z)^{\alpha}}dz\\ &+\beta p_{1}\int_{\mathbb{G}}f(z) \frac{\psi^{\gamma}[|u_{n}|^{p_{1}-2}u_{n}|v_{n}|^{p_{2}}-|u_{0}|^{p_{1}-2}u_{0}|v_{0}|^{p_{2}}](u_{n}-u_{0})}{\text{d}(z)^{\gamma}}dz\\ &+\beta p_{2}\int_{\mathbb{G}}f(z) \frac{\psi^{\gamma}[|u_{n}|^{p_{1}}|v_{n}|^{p_{2}-2}v_{n}-|u_{0}|^{p_{1}}|v_{0}|^{p_{2}-2}v_{0}](v_{n}-v_{0})}{\text{d}(z)^{\gamma}}dz. \end{aligned} \end{equation} | (3.35) |
For the first term in (3.35), by using Hölder inequality, we get that
\begin{equation} \begin{aligned} &\Big|\int_{\mathbb{G}} \frac{\psi^{\alpha}(|u_{n}|^{2^*(\alpha)-2}u_{n}-|u_{0}|^{2^*(\alpha)-2}u_{0})(u_{n}-u_{0})} {\text{d}(z)^{\alpha}}dz\Big|\\ &\leq\int_{\mathbb{G}} \frac{\psi^{\alpha}|u_{n}|^{2^*(\alpha)-1}|u_{n}-u_{0}|}{\text{d}(z)^{\alpha}}dz+ \int_{\mathbb{G}} \frac{\psi^{\alpha}|u_{0}|^{2^*(\alpha)-1}|u_{n}-u_{0}|}{\text{d}(z)^{\alpha}}dz \\ &\leq\left(\int_{\mathbb{G}} \frac{\psi^{\alpha}|u_{n}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz\right)^{\frac{2^*(\alpha)-1}{2^*(\alpha)}} \left(\int_{\mathbb{G}} \frac{\psi^{\alpha}|u_{n}-u_{0}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz\right)^{\frac{1}{2^*(\alpha)}}\\ &\quad+ \left(\int_{\mathbb{G}} \frac{\psi^{\alpha}|u_{0}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz\right)^{\frac{2^*(\alpha)-1}{2^*(\alpha)}} \left(\int_{\mathbb{G}} \frac{\psi^{\alpha}|u_{n}-u_{0}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz\right)^{\frac{1}{2^*(\alpha)}}\\ &\to 0\,\,\,\text{as}\,\,n\to \infty. \end{aligned} \end{equation} | (3.36) |
Similarly,
\begin{equation} \Big|\int_{\mathbb{G}} \frac{\psi^{\alpha}(|v_{n}|^{2^*(\alpha)-2}v_{n}-|v_{0}|^{2^*(\alpha)-2}v_{0})(v_{n}-v_{0})} {\text{d}(z)^{\alpha}}dz\Big| \to 0\,\,\text{as}\,\,n\to \infty. \end{equation} | (3.37) |
On the other hand, using the Hölder inequality and (u_{n}, v_{n})\rightharpoonup (u_{0}, v_{0}) weakly in \mathcal{H} , we get that
\begin{equation} \begin{aligned} &\Big|\int_{\mathbb{G}}f(z) \frac{\psi^{\gamma}[|u_{n}|^{p_{1}-2}u_{n}|v_{n}|^{p_{2}}-|u_{0}|^{p_{1}-2}u_{0}|v_{0}|^{p_2}](u_{n}-u_{0})}{\text{d}(z)^{\gamma}}dz\Big|\\ &\leq \int_{\mathbb{G}} \frac{\psi^{\gamma}|f(z)||u_{n}|^{p-1}|u_{n}-u_{0}|} {\text{d}(z)^{\gamma}}dz +\int_{\mathbb{G}}|f(z)| \frac{\psi^{\gamma}|u_{0}|^{p-1}|u_{n}-u_{0}|} {\text{d}(z)^{\gamma}}dz\\ &\leq\left(\int_{\mathbb{G}} \frac{\psi^{\gamma}|f(z)|^{\frac{2^*(\gamma)}{2^*(\gamma)-p}}} {\text{d}(z)^{\gamma}}dz\right)^{\frac{2^*(\gamma)-p}{2^*(\gamma)}} \left(\int_{\mathbb{G}}\frac{\psi^{\gamma}|u_{n}|^{2^*(\gamma)}} {\text{d}(z)^{\gamma}}dz\right)^{\frac{p-1}{2^*(\gamma)}} \left(\int_{\mathbb{G}}\frac{\psi^{\gamma}|u_{n}-u_{0}|^{2^*(\gamma)}} {\text{d}(z)^{\gamma}}dz\right)^{\frac{1}{2^*(\gamma)}}\\ &+\left(\int_{\mathbb{G}}\frac{\psi^{\gamma}|f(z)|^{\frac{2^*(\gamma)}{2^*(\gamma)-p}}} {\text{d}(z)^{\gamma}}dz\right)^{\frac{2^*(\gamma)-p}{2^*(\gamma)}} \left(\int_{\mathbb{G}}\frac{\psi^{\gamma}|u_{0}|^{2^*(\gamma)}}{\text{d}(z)^{\gamma}}dz\right)^{\frac{p-1}{2^*(\gamma)}} \left(\int_{\mathbb{G}}\frac{\psi^{\gamma}|u_{n}-u_{0}|^{2^*(\gamma)}}{\text{d}(z)^{\gamma}}dz\right)^{\frac{1}{2^*(\gamma)}}\\ &\to 0\quad\text{as}\,\,\,n\to \infty, \end{aligned} \end{equation} | (3.38) |
and
\begin{equation} \Big|\int_{\mathbb{G}}f(z) \frac{\psi^{\gamma}[|u_{n}|^{p_{1}}|v_{n}|^{p_{2}-2}v_{n} -|u_{0}|^{p_{1}}|v_{0}|^{p_{2}-2}v_{0}](v_{n}-v_{0})}{\text{d}(z)^{\gamma}}dz\Big| \to 0\,\,\,\text{as}\,\,n\to \infty, \end{equation} | (3.39) |
Combining (3.36), (3.37), (3.38), (3.39), (3.35) with \lim\limits_{n\to \infty}\langle I'_{\lambda_{1}, \lambda_{2}, \beta}(u_{n}, v_{n}), (u_{n}-u_{0}, v_{n}-v_{0})\rangle = 0 and \lim\limits_{n\to \infty}\langle I'_{\lambda_{1}, \lambda_{2}, \beta}(u_{0}, v_{0}), (u_{n}-u_{0}, v_{n}-v_{0})\rangle = 0 , we deduce that
\lim\limits_{n\to \infty}\|(u_{n}-u_{0},v_{n}-v_{0})\|_{\mathcal{H}} = 0. |
The proof is completed.
In the end of this section, we will prove the existence of infinitely many weak solutions of (1.1) which tend to zero. First, by using Hölder's inequality and Young's inequality, we get
\begin{equation*} \label{eq4-1} \begin{aligned} \int_{\mathbb{G}}\frac{\psi^{\alpha}|u|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz +\int_{\mathbb{G}}\frac{\psi^{\alpha}|v|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz &\leq S_{\alpha,\mu_{1}}^{-\frac{2^*(\alpha)}{2}}\|u\|_{\mu_{1}}^{2^*(\alpha)} +S_{\alpha,\mu_{2}}^{-\frac{2^*(\alpha)}{2}}\|v\|_{\mu_{2}}^{2^*(\alpha)}\\ &\leq (S_{\alpha,\mu_{1}}^{-\frac{2^*(\alpha)}{2}} +S_{\alpha,\mu_{2}}^{-\frac{2^*(\alpha)}{2}})\|(u,v)\|_{\mathcal{H}}^{2^*(\alpha)}, \end{aligned} \end{equation*} |
and
\begin{equation} \begin{aligned} \int_{\mathbb{G}}f(z) &\frac{\psi^{\gamma}|u_{n}|^{p_{1}}|v_{n}|^{p_{2}}}{\text{d}(z)^{\gamma}}dz \leq \frac{p_{1}}{p}\int_{\mathbb{G}}f(z)\frac{\psi^{\gamma}|u_{n}|^{p}}{\text{d}(z)^{\gamma}}dz +\frac{p_{2}}{p}\int_{\mathbb{G}}f(z)\frac{\psi^{\gamma}|v_{n}|^{p}}{\text{d}(z)^{\gamma}}dz\\ &\leq \frac{p_{1}}{p} \left(\int_{\mathbb{G}}|f(z)|^{\frac{2^*(\gamma)}{2^*(\gamma)-p}}\frac{\psi^{\gamma}} {\text{d}(z)^{\gamma}}dz\right)^{\frac{2^*(\gamma)-p}{2^*(\gamma)}} \left(\int_{\mathbb{G}}\frac{\psi^{\gamma}|u_{n}|^{2^*(\gamma)}} {\text{d}(z)^{\gamma}}dz\right)^{\frac{p}{2^*(\gamma)}}\\ &+ \frac{p_{2}}{p} \left(\int_{\mathbb{G}}|f(z)|^{\frac{2^*(\gamma)}{2^*(\gamma)-p}}\frac{\psi^{\gamma}} {\text{d}(z)^{\gamma}}dz\right)^{\frac{2^*(\gamma)-p}{2^*(\gamma)}} \left(\int_{\mathbb{G}}\frac{\psi^{\gamma}|v_{n}|^{2^*(\gamma)}} {\text{d}(z)^{\gamma}}dz\right)^{\frac{p}{2^*(\gamma)}}\\ &\leq \|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} \Big(\frac{p_{1}}{p} S_{\gamma,\mu_{1}}^{-\frac{p}{2}}\|u_{n}\|_{\mu_{1}}^{p} + \frac{p_{2}}{p}S_{\gamma,\mu_{2}}^{-\frac{p}{2}}\|v_{n}\|_{\mu_{2}}^{p}\Big)\\ &\leq \|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} (S_{\gamma,\mu_{1}}^{-\frac{p}{2}} + S_{\gamma,\mu_{2}}^{-\frac{p}{2}})\|(u_{n},v_{n})\|_{\mathcal{H}}^{p}. \end{aligned} \end{equation} | (3.40) |
Then,
\begin{equation*} \begin{aligned} I_{\lambda_{1},\lambda_{2},\beta}(u,v) & = \frac{1}{2}\|(u,v)\|^{2}_{\mathcal{H}} -\frac{\lambda_{1}}{2^*(\alpha)}\int_{\mathbb{G}}\frac{\psi^{\alpha}|u|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz -\frac{\lambda_{2}}{2^*(\alpha)}\int_{\mathbb{G}}\frac{\psi^{\alpha}|v|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}dz \\ &\quad-\beta \int_{\mathbb{G}}f(z)\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}}}{\text{d}(z)^{\gamma}}dz\\ &\geq \frac{1}{2}\|(u,v)\|_{\mathcal{H}}^{2} -(\lambda_{1}+\lambda_{2})\frac{ (S_{\alpha,\mu_{1}}^{-\frac{2^*(\alpha)}{2}} +S_{\alpha,\mu_{2}}^{-\frac{2^*(\alpha)}{2}})}{2^*(\alpha)}\|(u,v)\|_{\mathcal{H}}^{2^{*}(\alpha)}\\ &\quad-\beta\|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} (S_{\gamma,\mu_{1}}^{-\frac{p}{2}} + S_{\gamma,\mu_{2}}^{-\frac{p}{2}})\|(u,v)\|^{p}_{\mathcal{H}}. \end{aligned} \end{equation*} |
Define the function
g(t) = \frac{1}{2}t^{2}-C_{1}(\lambda_{1}+\lambda_{2})t^{2^*(\alpha)}-C_{2}\beta t^{p},\quad \forall t > 0, |
where
C_{1}: = \frac{ (S_{\alpha,\mu_{1}}^{-\frac{2^*(\alpha)}{2}} +S_{\alpha,\mu_{2}}^{-\frac{2^*(\alpha)}{2}})}{2^*(\alpha)}, \quad C_{2}: = \|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} (S_{\gamma,\mu_{1}}^{-\frac{p}{2}} + S_{\gamma,\mu_{2}}^{-\frac{p}{2}}) > 0. |
Because 1 < p < 2 < 2^*(\alpha) , for the given \beta > 0 , there exists \lambda_{**} > 0 so small that for \lambda_{1}+\lambda_{2} \in (0, \lambda_{**}) , there exist t_{1} , t_{2} > 0 with t_1 < t_2 such that g(t_1) = g(t_2) = 0 , and g(t) < 0 for t \in (0, t_1) , g(t) > 0 for t \in (t_{1}, t_2) , g(t) < 0 for t \in (t_{2}, +\infty) . Similarly, given \lambda_{1} , \lambda_{2} > 0 , we can choose \beta_{**} > 0 small enough such that for all \beta \in(0, \beta_{**}) , there exist \hat{t}_{1} , \hat{t}_{2} > 0 with \hat{t}_1 < \hat{t}_2 such that g(\hat{t}_1) = g(\hat{t}_2) = 0 and g(t) < 0 for t\in (0, \hat{t}_1) , g(t) > 0 for t\in (\hat{t}_1, \hat{t}_2) , g(t) < 0 for t\in (\hat{t}_{2}, +\infty) .
Let us define a function \phi\in C^{\infty}_{0}([0\, ,\, \infty), \mathbb{R}) such that 0\leq \phi(t)\leq 1 , \phi(-t) = \phi(t) for all t\in [0, +\infty) , \phi(t) = 1 if t\in [0, t_{1}] and \phi(t) = 0 if t\in [t_{2}, \infty) . So we consider the equation
\begin{equation} \left\{\begin{aligned} &-\Delta_{\mathbb{G}}u-\mu_{1}\frac{\psi^{2}u}{\text{d}(z)^{2}} = \lambda_{1}\phi(\|(u,v)\|_{\mathcal{H}})\frac{\psi^{\alpha}|u|^{2^*(\alpha)-2}u}{\text{d}(z)^{\alpha}}+\beta p_{1}f(z)\frac{\psi^{\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{\text{d}(z)^{\gamma}}\,\,\, &\text{in } \,\,\mathbb{G},\\ &-\Delta_{\mathbb{G}}v-\mu_{2}\frac{\psi^{2}v}{\text{d}(z)^{2}} = \lambda_{2}\phi(\|(u,v)\|_{\mathcal{H}})\frac{\psi^{\alpha}|v|^{2^*(\alpha)-2}v}{\text{d}(z)^{\alpha}}+\beta p_{2}f(z)\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{\text{d}(z)^{\gamma}}\,\,\, &\text{in } \,\,\mathbb{G}, \end{aligned}\right. \end{equation} | (3.41) |
and we observe that if (u, v) is a weak solution of (3.41) such that \|(u, v)\|_{\mathcal{H}} < t_{1} , then (u, v) is also a solution of (1.1). For this reason we look for critical points of the following functional \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}: \mathcal{H}\to \mathbb{R} defined as
\begin{equation*} \begin{aligned} \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v) & = \frac{1}{2}\|(u,v)|^{2}_{\mathcal{H}} -\frac{1}{2^*(\alpha)}\int_{\mathbb{G}}\phi(\|(u,v)\|_{\mathcal{H}}) \Big(\lambda_{1}\frac{\psi^{\alpha}|u|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}} +\lambda_{2} \frac{\psi^{\alpha}|v|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}}\Big)dz\\ &-\beta \int_{\mathbb{G}}f(z)\frac{\psi^{\gamma}|u|^{p_1}|v|^{p_{2}}}{\text{d}(z)^{\gamma}}dz, \quad \forall (u,v)\in \mathcal{H}.\\ \end{aligned} \end{equation*} |
In view of the definition of \phi and p < 2 we can see that \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u, v)\to \infty as \|(u, v)\|_{\mathcal{H}}\to \infty , \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(-u, -v) = \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u, v) and \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u, v) is bounded from below. Moreover, I_{\lambda_{1}, \lambda_{2}, \beta}(u, v)\leq \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u, v) for all (u, v)\in \mathcal{H} .
Next, we show that \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} satisfies the assumptions of Theorem 2.1.
Lemma 3.2. (i) If \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u, v) < 0 , then \|(u, v)\|_{\mathcal{H}} < t_1 and \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(\tilde{u}, \tilde{v}) = I_{\lambda_{1}, \lambda_{2}, \beta}(\tilde{u}, \tilde{v}) for all (\tilde{u}, \tilde{v})\in N_{(u, v)} , where N_{(u, v)} denotes the enough neighborhood of (u, v) .
(ii) For \lambda_{1} , \lambda_{2} > 0 , there exists \widetilde{\beta } = \min\{\beta_{*}, \beta_{**}\} such that if \beta \in (0, \widetilde{\beta}) and c \in (-\infty, 0) , then \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} satisfies (PS)_c -condition;
(iii) For \beta > 0 , there exists \widetilde{\lambda} = \min\{\lambda_{*}, \lambda_{**}\} such that if \lambda_{1}, \, \lambda_{2} \in(0, \widetilde{\lambda}) and c \in(-\infty, 0) , then \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} satisfies (PS)_c -condition.
Proof. We prove (i) by contradiction, assume \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u), v\leq0 and \|(u, v)\|_{\mathcal{H}}\geq t_1 . If \|(u, v)\|_{\mathcal{H}}\geq t_2 , then we have
\mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v) \geq \frac{1}{2}\|(u,v)\|_{\mathcal{H}}^{2} -\beta\|f\|_{L^{p_{*}}(\mathbb{G},\frac{\psi^{\gamma}}{\text{d}(z)^{\gamma}}dz)} (S_{\alpha,\mu_{1}}^{-\frac{p}{2}} + S_{\alpha,\mu_{2}}^{-\frac{p}{2}})\|(u,v)\|^{p}_{\mathcal{H}} > 0. |
This contradicts \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u, v) < 0 .
If t_{1}\leq \|(u, v)\|_{\mathcal{H}} < t_2 , since 0\leq\phi(t)\leq 1 , we get
\mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v)\geq I_{\lambda_{1},\lambda_{2},\beta}(u,v) \geq g(\|(u,v)\|_{\mathcal{H}}) > 0, |
which again contradicts \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u, v) < 0 . Hence, \|(u, v)\|_{\mathcal{H}} < t_1 . Furthermore, by continuity of \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} , applying I_{\lambda_{1}, \lambda_{2}, \beta}(u, v) = \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u, v) for all \|(u, v)\|_{\mathcal{H}} < t_1 there exists a small neighborhood \mathcal{B}_{(u, v)}\subset B_{\text{d}}((0, 0), R) of (u, v) such that I_{\lambda_{1}, \lambda_{2}, \beta}(\tilde{u}, \tilde{v}) = \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(\tilde{u}, \tilde{v}) for any (\tilde{u}, \tilde{v})\in \mathcal{B}_{(u, v)} , we conclude the proof of (i).
Now we prove (ii), let \widetilde{\beta} = \min\{\beta_{*}, \beta_{**}\} , and let \{(u_{n}, v_{n})\}\subset \mathcal{H} be a (PS)_{c} -sequence for \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} with the level c < 0 , then \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u_{n}, v_{n})\to c and \mathcal{J}'_{\lambda_{1}, \lambda_{2}, \beta}(u_{n}, v_{n})\to 0 in \mathcal{H}^{-1} . By (i), we have \|(u_{n}, v_{n})\|_{\mathcal{H}} < t_1 , hence \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u_{n}, v_{n}) = I_{\lambda_{1}, \lambda_{2}, \beta}(u_{n}, v_{n}) . By Proposition 3.1, I_{\lambda_{1}, \lambda_{2}, \beta} satisfies the (PS)_{c} -condition for c < 0 . Thus, \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} satisfies the (PS)_{c} -condition for c < 0 , (ii) holds.
The proof of (iii) goes exactly as (ii) with only minor modification, we omit it here.
Let
\mathcal{J}^{-\varepsilon}_{\lambda_{1},\lambda_{2},\beta} = \{(u,v)\in \mathcal{H}:\,\mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v)\leq -\varepsilon\}. |
Lemma 3.3. Given k\in \mathbb{N} , there exists \varepsilon = \varepsilon(k) > 0 such that \gamma(\mathcal{J}^{-\varepsilon}_{\lambda_{1}, \lambda_{2}, \beta})\geq k for any \lambda_{1} , \lambda_{2} , \beta > 0 .
Proof. Fix \lambda_{1} , \lambda_{2} > 0 , k\in \mathbb{N} and let E_{k} be a k -dimensional vectorial subspace of \mathcal{H} . Taking (u, v)\in E_{k}\backslash\{(0, 0)\} with (u, v) = r_{k}(\omega_{1}, \omega_{2}) , where (\omega_{1}, \omega_{2})\in E_{k} and \|(\omega_{1}, \omega_{2})\|_{\mathcal{H}} = 1 . Then, by (3.40) there is a constant C > 0 such that
\Big|\int_{\mathbb{G}}f(z) \frac{\psi^{\gamma}|\omega_{1}|^{p_{1}}|\omega_{2}|^{p_{2}}}{\text{d}(z)^{\gamma}}dz\Big| \leq C\|(\omega_{1},\omega_{2})\|^{p}_{\mathcal{H}} = C < \infty, |
which implies that there exists c_{k}\in (-\infty, +\infty) such that
\int_{\mathbb{G}}f(z)\frac{\psi^{\gamma}|\omega_{1}|^{p_{1}}|\omega_{2}|^{p_{2}}}{\text{d}(z)^{\gamma}}dz\geq c_{k} > -\infty. |
Thus, for each (u, v) = r_{k}(\omega_{1}, \omega_{2}) with r_{k}\in (0, t_{1}) , we have
\begin{equation*} \begin{aligned} \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v) & = \mathcal{J}_{\lambda,\beta}(r_{k}(\omega_{1},\omega_{2}))\\ & = \frac{r_{k}^{2}}{2} -\frac{ r_{k}^{2^*(\alpha)}}{2^*(\alpha)}\phi(r_{k}) \int_{\mathbb{G}}(\lambda_{1}\frac{\psi^{\alpha}|\omega_{1}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}} +\lambda_{2}\frac{\psi^{\alpha}|\omega_{2}|^{2^*(\alpha)}}{\text{d}(z)^{\alpha}})dz\\ &-\beta r_{k}^{p} \int_{\mathbb{G}}f(z)\frac{\psi^{\gamma}|\omega_{1}|^{p_{1}}|\omega_{2}|^{p_2}}{\text{d}(z)^{\gamma}}dz\\ &\leq \frac{1}{2}r_{k}^{2} -\beta c_{k}r_{k}^{p}. \end{aligned} \end{equation*} |
For any \varepsilon: = \varepsilon(k) > 0 , there exists r_{k}\in (0, t_{1}) small enough such that \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u, v)\leq -\varepsilon for any (u, v)\in \mathcal{H} with \|(u, v)\|_{\mathcal{H}} = r_{k} .
Denote \mathcal{S}_{k} = \{(u, v)\in \mathcal{H}:\, \|(u, v)\|_{\mathcal{H}} = r_{k}\}. Clearly, \mathcal{S}_{k} is homeomorphic to the k-1 dimensional sphere \mathbb{S}^{k-1} and \mathcal{S}_{k}\cap E_{k}\subset \mathcal{J}^{-\varepsilon}_{\lambda_{1}, \lambda_{2}, \beta} . By Proposition 2.1 (2) and (4) it follows that
\gamma(\mathcal{J}^{-\varepsilon}_{\lambda_{1},\lambda_{2},\beta}) \geq \gamma(\mathcal{S}_{k}\cap E_{k}) = k, |
concluding the proof.
Let us set the number
\begin{equation*} \label{eq4-3} c_{k} = \inf\limits_{A\in \Gamma_{k}}\sup\limits_{(u,v)\in A} \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v), \end{equation*} |
with
\Gamma_{k} = \{A\subset \mathcal{H}: A\,\,\text{is closed}, A = -A\,\,\text{and}\,\, \gamma(A)\geq k\}. |
Clearly, c_{k}\leq c_{k+1} for each k\in \mathbb{N} . Before proving our main result, we state the following technical results.
Lemma 3.4. c_{k} < 0 for all k\in \mathbb{N} .
Proof. Fix k\in \mathbb{N} . By Lemma 3.3, there exists \varepsilon > 0 such that \gamma(\mathcal{J}^{-\varepsilon}_{\lambda_{1}, \lambda_{2}, \beta})\geq k . This and \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} is a continuous even functional imply that \mathcal{J}^{-\varepsilon}_{\lambda_{1}, \lambda_{2}, \beta}\in \Gamma_{k} . Then
(0,0)\not\in \mathcal{J}^{-\varepsilon}_{\lambda_{1},\lambda_{2},\beta}\,\,\, \text{and}\,\,\, \sup\limits_{(u,v)\in \mathcal{J}^{-\varepsilon}_{\lambda_{1},\lambda_{2},\beta}}\mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v)\leq -\varepsilon < 0. |
Therefore, taking into account that \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} is bounded from below, we get
-\infty < c_{k} = \inf\limits_{A\in \Gamma_{k}}\sup\limits_{(u,v)\in A} \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v)\leq \sup\limits_{(u,v)\in \mathcal{J}^{-\varepsilon}_{\lambda_{1},\lambda_{2},\beta}} \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v)\leq -\varepsilon < 0. |
Let
K_{c} = \{(u,v)\in \mathcal{H}:\, \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}'(u,v) = 0\,\,\text{and}\,\, \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v) = c\}. |
Lemma 3.5. For any \lambda_{1} , \lambda_{2} , \beta > 0 , the critical values \{c_k\}_{k\in \mathbb{N}} of \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} satisfy c_{k}\to 0 as k\to \infty .
Proof. Fix \mu_{1} , \mu_{2}\in [0, \mu_{\mathbb{G}}) and \lambda_{1} , \lambda_{2} , \beta > 0 . By Lemma 3.4 it follows that c_{k} < 0 . Since c_{k}\leq c_{k+1} we can assume that \lim\limits_{k\to \infty}c_{k}\to c_{0} \leq 0 . Moreover, by Lemma 3.2, it is easy to see that the functional \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} satisfies the (PS)_{c_{k}} -condition at level c_{k} .
Now we prove that c_{0} = 0 . We argue by contradiction and we suppose that c_{0} < 0 . In view of Lemma 3.2, K_{c_{0}} is compact. Furthermore, it is easy to see that
K_{c_{0}}\subset \mathcal{E} : = \{ A\subset \mathcal{H}\setminus\{(0,0)\}:\,\,A\,\,\text{is closed and }\,\,A = -A \}, |
which and Proposition 2.1 (6) imply that \gamma(K_{c_{0}}) = k_{0} < \infty and there exists \delta > 0 such that N_{\delta}(K_{c_0})\subset \mathcal{E} and
\begin{equation} \gamma(K_{c_{0}}) = \gamma(N_{\delta}(K_{c_{0}})) = k_{0} < \infty, \end{equation} | (3.42) |
where N_{\delta}(K_{c_{0}}) = \{(u, v)\in \mathcal{H}:\text{dist}((u, v), K_{c_0})\leq \delta\} . Moreover, By [38, Theorem A.4], there exists an odd homeomorphism \eta:\, \mathcal{H}\to \mathcal{H} such that
\begin{equation} \eta(\mathcal{J}^{c_{0}+\varepsilon}_{\lambda_{1},\lambda_{2},\beta} \setminus N_{\delta}(K_{c_{0}}))\subset \mathcal{J}^{c_{0}-\varepsilon}_{\lambda_{1},\lambda_{2},\beta},\,\,\, \text{for some}\,\,\, \varepsilon \in (0,-c_{0}) \end{equation} | (3.43) |
Taking into account that c_{k+1}\leq c_{k} and c_{k}\to c_{0} as k\to \infty , we can find k\in \mathbb{N} such that c_{k} > c_{0}-\varepsilon and c_{k+k_{0}}\leq c_{0} , where k_{0} given in (3.42). Take A \in \Gamma_{k+k_{0}} such that \sup\limits_{(u, v)\in A}\mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}(u, v) \leq c_{k+k_{0}} < c_{0} +\varepsilon , by using Properties 2.1 (4), we have
\gamma(\overline{A\setminus N_{\delta}(K_{c_{0}})})\geq \gamma(A)-\gamma( N_{\delta}(K_{c_{0}})) \geq k \,\,\text{and}\,\,\, \gamma( \eta(\overline{A\setminus N_{\delta}(K_{c_{0}})}))\geq k, |
from which we have \eta(\overline{A\setminus N_{\delta}(K_{c_{0}})})\in \Gamma_{k} . Hence
\begin{equation} \sup\limits_{(u,v)\in\eta(\overline{A\setminus N_{\delta}(K_{c_0})}) } \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v) \geq c_{k} > c_{0}-\varepsilon. \end{equation} | (3.44) |
On the other hand, in view of (3.43) and A\subset \mathcal{J}^{c_{0}+\varepsilon}_{\lambda_{1}, \lambda_{2}, \beta} , we see that
\eta(A\setminus N_{\delta}(K_{c_{0}}))\subset \eta(\mathcal{J}^{c_{0}+\varepsilon}_{\lambda_{1},\lambda_{2},\beta}\setminus N_{\delta}(K_{c_{0}})) \subset \mathcal{J}^{c_{0}-\varepsilon}_{\lambda_{1},\lambda_{2},\beta}, |
which gives a contradiction in virtue of (3.44). Hence, c_{0} = 0 and \lim\limits_{k\to \infty}c_{k} = 0 hold.
Lemma 3.6. Let \lambda_{1} , \lambda_{2} , \beta be as in (ii) or (iii) of Lemma 3.2. If k, \, l\in\mathbb{N} such that c = c_{k} = c_{k+1} = \cdots = c_{k+l} , then
\gamma(K_{c})\geq l+1. |
Proof. From Lemma 3.4 we have that c = c_k = c_{k+1} = \ldots = c_{k+l} < 0 . By Lemma 3.2, \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} satisfies the (PS)_{c} -condition on the compact set K_{c} .
Suppose the result is not true, that is, \gamma(K_c)\leq l . Then, by Proposition 2.1 (6) there is a neighborhood of K_{c} , say N_\delta(K_c) , such that \gamma(N_\delta(K_c)) = \gamma(K_c)\leq l . By [38, Theorem A.4], there exists an odd homeomorphism \eta: \mathcal{H}\to \mathcal{H} such that
\begin{equation} \eta(\mathcal{J}_{\lambda_{1},\lambda_{2},\beta}^{c+\varepsilon}\setminus N_\delta(K_c))\subset \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}^{c-\varepsilon}\,\,\, \text{for some}\,\,\, \varepsilon \in (0,-c). \end{equation} | (3.45) |
From the definition of c = c_{n+l} , we know there exists A\in\Gamma_{n+l} such that
\sup\limits_{(u,v)\in A}\mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v) < c+\varepsilon, |
that is, A\subset\mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta}^{c+\varepsilon} , and so by (3.45) we get
\begin{equation*} \eta(A\setminus N_\delta(K_c))\subset \eta(\mathcal{J}_{\lambda_{1},\lambda_{2},\beta}^{c+\varepsilon}\setminus N_\delta(K_c)) \subset \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}^{c-\varepsilon}. \end{equation*} |
This yields
\begin{equation} \sup\limits_{u\in \eta(\overline{A \setminus N_\delta(K_{c})})} \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v) \leq c-\varepsilon, \end{equation} | (3.46) |
On the other hand, by parts (1), (3) of Proposition 2.1 we have
\begin{equation*} \gamma(\eta(\overline{A \setminus N_\delta(K_{c})})) \geq\gamma(\overline{A \setminus N_\delta(K_{c})}) \geq \gamma(A)-\gamma(N_\delta(K_{c}))\geq n. \end{equation*} |
Hence, we conclude that \eta(\overline{A \setminus N_\delta(K_{c})}) \in \Gamma_n and so
\begin{equation*} \sup\limits_{u\in \eta(\overline{A \setminus N_\delta(K_{c})})} \mathcal{J}_{\lambda_{1},\lambda_{2},\beta}(u,v) \geq c_n = c, \end{equation*} |
which contradicts (3.46). Thus, we conclude \gamma(K_{c})\geq l+1 .
Proof of Theorem 1.1 Let \lambda_{1} , \lambda_{2} , \beta be as in (ii) or (iii) of Lemma 3.2. Putting together Lemma 3.4 and Lemma 3.2 (ii) or (iii), we can see that the functional \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} satisfies the (PS)_{c_{k}} -condition with c_n < 0 . That is, c_k is a critical value of \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} .
We consider two situations.
If all c_{k} 's are distinct, that is, -\infty < c_1 < c_2 < \cdots < c_k < c_{k+1} < \cdots , then \gamma(K_{c_{k}})\geq 1 since K_{c_{k}} is a compact set. Thus, in this case \mathcal{J}_{\lambda_{1}, \lambda_{2}, \beta} admits infinitely many critical values. By Lemma 3.2 (1) we can see that I_{\lambda_{1}, \lambda_{2}, \beta} has infinitely many critical points, i.e., (1.1) has infinitely many solutions.
If for some k\in \mathbb{N} there exists l\in\mathbb{N} such that c_k = c_{k+1} = \cdots = c_{k+l} = c , then \gamma(K_c)\geq l+1\geq2 by Lemma 3.6. Thus, the set K_c has infinitely many distinct elements, (see [38, Remark 7.3]), i.e., I_{\lambda_{1}, \lambda_{2}, \beta} has infinitely many distinct critical point. Thus again, system (1.1) has infinitely many distinct weak solutions. Moreover, Lemma 3.5 implies that the energy of this solutions converges to zero.
The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare that there are no conflicts of interest.
[1] |
W. Liu, N. Yan, A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math., 15 (2001), 285-309. doi: 10.1023/A:1014239012739
![]() |
[2] | W. Liu, N. Yan, A posteriori error estimates for control problems governed by Stokes equations, SIAM J. Numer. Anal., 40 (2003), 1850-1869. |
[3] |
E. Casas, J. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., 45 (2006), 1586-1611. doi: 10.1137/050626600
![]() |
[4] |
W. Gong, M. Hinze, Z. Zhou, Finite element method and a priori error estimates for Dirichlet boundary control problems governed by parabolic PDEs, J. Sci. Comput., 66 (2016), 941-967. doi: 10.1007/s10915-015-0051-2
![]() |
[5] | W. Liu, D. Yang, L. Yuan, C. Ma, Finite element approximation of an optimal control problem with integral state constraint, SIAM J. Numer. Anal., 48 (2011), 1163-1185. |
[6] |
D. Yang, et al., State-dependent switching control of delayed switched systems with stable and unstable modes, Math. Method Appl. Sci., 41 (2018), 6968-6983. doi: 10.1002/mma.5209
![]() |
[7] |
D. Yang, X. Li, J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal-Hybri., 32 (2019), 294-305. doi: 10.1016/j.nahs.2019.01.006
![]() |
[8] |
J. Bouchaud, A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Physics Reports, 195 (1990), 127-293. doi: 10.1016/0370-1573(90)90099-N
![]() |
[9] | E. Barkai, R. Metzler, J. Klafter, Form continuous time random walks to the fractional Fokker-Planck equation, Physical Review E Statal Physics Plasmas Fluids & Related Interdiplinary Topics, 61 (2000), 132-138. |
[10] |
D. A. Benson, S. W. Wheatcraft, M. M. Meerschaeert, The fractional order governing equations of lévy motion, Water Resour. Res., 36 (2000), 1413-1423. doi: 10.1029/2000WR900032
![]() |
[11] | M. M. Meerschaert, A. Sikorskii, Stochastic models for fractional calculus, 2012. |
[12] |
Y. N. Zhang, Z. Z. Sun, H. L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265 (2014), 195-210. doi: 10.1016/j.jcp.2014.02.008
![]() |
[13] |
H. L. Qiao, Z. G. Liu, A. J. Cheng, Two unconditionally stable difference schemes for time distributed-order differential equation based on Caputo-Fabrizio fractional derivative, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
![]() |
[14] | V. Ervin, J. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Meth. Part. D. E., 22 (2010), 558-576. |
[15] |
B. Jin, R. Lazarov, Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput., 38 (2016), A146-A170. doi: 10.1137/140979563
![]() |
[16] |
H. Chen, H. Wang, Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation, J. Comput. Appl. Math., 296 (2016), 480-498. doi: 10.1016/j.cam.2015.09.022
![]() |
[17] |
B. Li, H. Luo, X. Xie, Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data, SIAM J. Numer. Anal., 57 (2019), 779-798. doi: 10.1137/18M118414X
![]() |
[18] |
Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552. doi: 10.1016/j.jcp.2007.02.001
![]() |
[19] | B. Li, H. Luo, X. Xie, A time-spectral algorithm for fractional wave problems, J. Sci. Comput., 7 (2018), 1164-1184. |
[20] |
Z. Zhou, W. Gong, Finite element approximation of optimal control problems governed by time fractional diffusion equation, Comput. Math. Appl., 71 (2016), 301-318. doi: 10.1016/j.camwa.2015.11.014
![]() |
[21] |
Z. Zhou, C. Zhang, Time-stepping discontinuous Galerkin approximation of optimal control problem governed by time fractional diffusion equation, Numer. Algorithms, 79 (2018), 437-455. doi: 10.1007/s11075-017-0445-3
![]() |
[22] |
M. Gunzburger, J. Wang, Error analysis of fully discrete finite element approximations to an optimal control problem governed by a time-fractional PDE, SIAM J. Control Optim., 57 (2019), 241-263. doi: 10.1137/17M1155636
![]() |
[23] |
B. Jin, B. Li, Z. Zhou, Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint, IMA J. Numer. Anal., 40 (2020), 377-404. doi: 10.1093/imanum/dry064
![]() |
[24] |
C. Zhang, H. Liu, Z. Zhou, A priori error analysis for time-stepping discontinuous Galerkin finite element approximation of time fractional optimal control problem, J. Sci. Comput., 80 (2019), 993-1018. doi: 10.1007/s10915-019-00964-9
![]() |
[25] |
X. Ye, C. Xu, Spectral optimization methods for the time fractional diffusion inverse problem, Numer. Math. Theory Me., 6 (2013), 499-519. doi: 10.4208/nmtma.2013.1207nm
![]() |
[26] |
L. Zhang, Z. Zhou, Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation, Appl. Numer. Math., 143 (2019), 247-262. doi: 10.1016/j.apnum.2019.04.003
![]() |
[27] |
Z. Zhou, Z. Tan, Finite element approximation of optimal control problem governed by space fractional equation, J. Sci. Comput., 78 (2019), 1840-1861. doi: 10.1007/s10915-018-0829-0
![]() |
[28] | X. Ye, C. Xu, A spectral method for optimal control problem governed by the abnormal diffusion equation with integral constraint on the state, Chinese science: Mathematics, 7 (2016), 1053-1070. |
[29] | H. Antil, D. Verma, M. Warma, Optimal control of fractional elliptic PDEs with state constraints and characterization of the dual of fractional order Sobolev spaces, 186 (2020), 1-23. |
[30] |
Z. Zhou, J. Song, Y. Chen, Finite element approximation of space fractional optimal control problem with integral state constraint, Numer. Math. Theory Me., 13 (2020), 1027-1049. doi: 10.4208/nmtma.OA-2019-0201
![]() |
[31] | V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, 1984. |
[32] |
E. Cacas, Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations, SIAM J. Control Optim., 35 (1997), 1297-1327. doi: 10.1137/S0363012995283637
![]() |
[33] |
E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints, ESAIM. Contr. Optim. Ca., 8 (2002), 345-374. doi: 10.1051/cocv:2002049
![]() |