Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A note on spanning Kr-cycles in random graphs

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213, USA

Special Issues: New advances in Combinatorics

We find a threshold for the existence of a collection of edge disjoint copies of Kr that form a cyclic structure and span all vertices of Gn,p. We use a recent result of Riordan to give a two line proof of the main result.
  Figure/Table
  Supplementary
  Article Metrics

References

1. A. Dudek and A. M. Frieze, Loose Hamilton Cycles in Random k-Uniform Hypergraphs, Electronic J. Comb., 18 (2011), 48.

2. A. Dudek, A. M. Frieze, P. Loh, et al. Optimal divisibility conditions for loose Hamilton cycles in random hypergraphs, Electronic J. Comb., 19 (2012), 44.

3. K. Frankston, J. Kahn, B. Narayanan, et al. Thresholds versus fractional expectation thresholds, 2019. Available from: https://arxiv.org/pdf/1910.13433.pdf.

4. A. M. Frieze, Loose Hamilton Cycles in Random 3-Uniform Hypergraphs, Electronic J. Comb., 17 (2010).

5. A. Heckel, Random triangles in random graphs, 2018. Available from: https://arxiv.org/pdf/1802.08472.pdf.

6. A. Johansson, J. Kahn and V. Vu, Factors in random graphs, Random Structures and Algorithms, 33 (2008), 1-28.    

7. O. Riordan, Random cliques in random graphs, 2018. Available from: https://arxiv.org/pdf/1802.01948.pdf.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved