Loading [MathJax]/jax/output/SVG/jax.js
Research article

On the number of solutions of two-variable diagonal quartic equations over finite fields

  • Received: 16 November 2019 Accepted: 16 March 2020 Published: 20 March 2020
  • MSC : 11T23, 11T24

  • Let p be a odd prime number and let Fq be the finite field of characteristic p with q elements. In this paper, by using the Gauss sum and Jacobi sum, we give an explicit formula for the number N(x41+x42=c) of solutions of the following two-variable diagonal quartic equations over Fq: x41+x42=c with cFq. From this result, one can deduce that N(x41+x42=c)=q+O(q12).

    Citation: Junyong Zhao, Yang Zhao, Yujun Niu. On the number of solutions of two-variable diagonal quartic equations over finite fields[J]. AIMS Mathematics, 2020, 5(4): 2979-2991. doi: 10.3934/math.2020192

    Related Papers:

    [1] Junyong Zhao, Shaofang Hong, Chaoxi Zhu . The number of rational points of certain quartic diagonal hypersurfaces over finite fields. AIMS Mathematics, 2020, 5(3): 2710-2731. doi: 10.3934/math.2020175
    [2] Shuangnian Hu, Rongquan Feng . On the number of solutions of two-variable diagonal sextic equations over finite fields. AIMS Mathematics, 2022, 7(6): 10554-10563. doi: 10.3934/math.2022588
    [3] Shuangnian Hu, Yanyan Li, Rongquan Feng . Counting rational points of quartic diagonal hypersurfaces over finite fields. AIMS Mathematics, 2024, 9(1): 2167-2180. doi: 10.3934/math.2024108
    [4] Shuangnian Hu, Rongquan Feng . The number of solutions of cubic diagonal equations over finite fields. AIMS Mathematics, 2023, 8(3): 6375-6388. doi: 10.3934/math.2023322
    [5] Yanbo Song . The recurrence formula for the number of solutions of a equation in finite field. AIMS Mathematics, 2021, 6(2): 1954-1964. doi: 10.3934/math.2021119
    [6] Wenxu Ge, Weiping Li, Tianze Wang . A remark for Gauss sums of order 3 and some applications for cubic congruence equations. AIMS Mathematics, 2022, 7(6): 10671-10680. doi: 10.3934/math.2022595
    [7] Zhichao Tang, Xiang Fan . Ternary cyclotomic numbers and ternary Jacobi sums. AIMS Mathematics, 2024, 9(10): 26557-26578. doi: 10.3934/math.20241292
    [8] Wenxu Ge, Weiping Li, Tianze Wang . A note on some diagonal cubic equations over finite fields. AIMS Mathematics, 2024, 9(8): 21656-21671. doi: 10.3934/math.20241053
    [9] Guangyan Zhu, Shiyuan Qiang, Mao Li . Counting rational points of two classes of algebraic varieties over finite fields. AIMS Mathematics, 2023, 8(12): 30511-30526. doi: 10.3934/math.20231559
    [10] Lin Han, Guangyan Zhu, Zongbing Lin . On the rationality of generating functions of certain hypersurfaces over finite fields. AIMS Mathematics, 2023, 8(6): 13898-13906. doi: 10.3934/math.2023711
  • Let p be a odd prime number and let Fq be the finite field of characteristic p with q elements. In this paper, by using the Gauss sum and Jacobi sum, we give an explicit formula for the number N(x41+x42=c) of solutions of the following two-variable diagonal quartic equations over Fq: x41+x42=c with cFq. From this result, one can deduce that N(x41+x42=c)=q+O(q12).


    Let p be an odd prime number with q=ps, sZ+. Let Fq be the finite field of q elements. For any polynomial f(x1,,xn) over Fq with n variables, we let N(f=0) stand for the number of Fq-rational points on the affine hypersurface f(x1,,xn)=0 over Fnq. That is, we have

    N(f=0)={(x1,,xn)Fnq|f(x1,,xn)=0}.

    Calculating the value of N(f=0) is a main topic in finite fields. Weil [15] proposed his famous conjecture on the number of rational points of the nonsingular projective hypersurface over Fnq. However, it is difficult to give an exact formula for N(f=0). Studying the explicit formula for N(f=0) under certain conditions has attracted a lot of authors for many years. Some works were done by Ax [3], Adolphson and Sperber [1,2], Carlitz [5], Hong [7,8,9], Hu, Hong and Zhao [11], Zhao, Hong and Zhu [17]. It is noticed that the p-adic method is used by Hong et al. in [10] to establish the universal Kummer congruences.

    On the other hand, in 1977, Chowla, Cowles and Cowles [6] determined the number of solutions of the equation

    x31+x32++x3n=0

    in Fp. In 1981, Myerson [13] extend the result in [6] to the field Fq and first studied the number of solution of the equation

    x41+x42++x4n=0

    over Fq. In 2018, Zhang and Hu [16] determined an explicit formula of equation

    x31+x32+x33+x34=c,cFp

    with p1(mod3) as follows: Let N(c) be the number of solutions of x31+x32+x33+x34=c,cFp with p1(mod3), and Fp=g. Then they proved the following formula:

    N(c)={p36p12p(5d27b), if cg3m+1(modp),p36p12p(5d±27b), if cg3m+2(modp),p36p+5dp, if cg3m(modp).

    In this paper, we investigate the question of counting the number of solutions of the following equation:

    x41+x42=c

    with cFq. Actually, we obtain the following result.

    Theorem 1.1. Let F=Fq be the finite field with q=ps where p is an odd prime and sZ+. Let cFq and g be a primitive element of Fq.

    (i). If p1(mod8) or p5(mod8) and s is even, then

    N(x41+x42=c)={q+6a(1)s13,if  indg(c)0(mod4),q+2(1)s(a2b)3,if  indg(c)1(mod4),q+2a(1)s3,if  indg(c)2(mod4),q+2(1)s(a+2b)3,if  indg(c)3(mod4).

    If p5(mod8) and s is odd, then

    N(x41+x42=c)={q2a(1)s1+1,if  indg(c)0(mod4),q+2(1)s(a+2b)+1,if  indg(c)1(mod4),q+6a(1)s1+1,if  indg(c)2(mod4),q+2(1)s(a2b)+1,if  indg(c)3(mod4),

    where a+bi=(a+bi)s with a and b being integers such that

    a2+b2=p, a1(mod4), bagq14(modp).

    (ii). If p3(mod4) and q1(mod4), then

    N(x41+x42=c)=(q12φ(1)+6rη(c)(1)s1)+2q9r(1)s1((±¯φ(c))+(φ(c)))i,

    where r is uniquely determined by

    q=r2+4t2,r1(mod4),and,if p1(mod4), then (r,p)=1.

    (iii). If p3(mod4) and q3(mod4), then

    N(x41+x42=c)=q+1.

    We notice that Theorem 1.1 (ⅰ) for the special case q=p has been mentioned in the book of Jacobsthal's book. Furthermore, Theorem 1.1 (ⅱ) is a special case of Wolfmann [14], but we here get it by a different method. From Theorem 1.1, we can easily deduce the following statement.

    Corollary 1.1. Let F=Fq be the finite field with q=ps, where p1(mod4) is an odd prime and sZ+. Let cFq. Then each of the following is true.

    (i). If p1(mod4), then |N(x41+x42=c)q|7q for each q9.

    (ii). If p3(mod4) and q1(mod4), then |N(x41+x42=c)q|(7+42)q for each q81.

    This paper is organized as follows. First of all, in Section 2, we present several basic concepts including the Gauss sums, and give some preliminary lemmas. Then in Section 3, we give the proof of our main result Theorem 1.1 and Corollary 1.2. Finally, in Section 4, we supply two examples.

    In this section, we present several definitions and auxiliary lemmas that are needed in the proof of Theorem 1.1. We begin with three definitions.

    Definition 2.1. Let p be a prime number and q=ps with s being a positive integer. Let α be an element of Fq. Then the trace and norm of α relative to Fp are defined by

    TrFq/Fp(α):=α+αp++αps1

    and

    NFq/Fp(α):=ααpαps1=αq1p1,

    respectively. For the simplicity, we write Tr(α) and N(α) for TrFq/Fp(α) and NFq/Fp(α), respectively.

    Definition 2.2. Let χ be a multiplicative character of Fq and ψ an additive character of Fq. Then we define the Gauss sum G(χ,ψ) by

    G(χ,ψ):=xFqχ(x)ψ(x).

    Definition 2.3. Let χ1 and χ2 be multiplicative characters of Fq. Then the sum

    J(χ1,χ2):=xFqχ1(x)χ2(1x)

    is called a Jacobi sum in Fq.

    The character ψ0 represents the trivial additive character such that ψ0(x)=1 for all xFq and χ0 represents the trivial multiplicative character such that χ0(x)=1 for all xFq. For any xFq, let

    ψ1(x):=exp(2πiTr(x)p).

    Then we call ψ1 the canonical additive character of Fq. Let aFq. Then we define

    ψa(x):=exp(2πiTr(ax)p)

    for all xFq. For each character ψ of Fq there is associated the conjugate character ¯ψ defined by ¯ψ(x)=¯ψ(x) for all xFq. Let η be the quadratic character of Fq.

    We give several basic identities about Gauss sums as follows.

    Lemma 2.1. [12] Each of the following is true:

    (i). G(χ,ψab)=¯χ(a)G(χ,ψb) for aFq, bFq.

    (ii). G(¯χ,ψ)=χ(1)¯G(χ,ψ).

    (iii). |G(χ,ψ)|=q1/2 for χχ0 and ψψ0.

    Lemma 2.2. [12] Let Fq be a finite field with q=ps, where p is an odd prime and sN+. Then

    G(η,ψ1)={(1)s1q12,if  p1(mod4),(1)s1isq12,if  p3(mod4).

    If χ1 and χ2 are nontrivial, there exists an important connection between Jacobi sums and Gauss sums that will allow us to determine the value of Jacobi sums.

    Lemma 2.3. [12] If χ1 and χ2 are multiplicative characters of Fq and ψ is a nontrivial additive character of Fq, then

    J(χ1,χ2)=G(χ1,ψ)G(χ2,ψ)G(χ1χ2,ψ)

    if χ1χ2 is nontrivial.

    For a multiplicative character χ of Fq, we obviously have χ(1)=±1. The value χ(1) is of interest. The following result is regarding the sign of χ(1).

    Lemma 2.4. [12] Let χ be a multiplicative character of Fq of order n. Then χ(1)=1 if and only if n is even and q1n is odd.

    Clearly, we have the following consequence.

    Corollary 2.1. Let p1(mod4) be an odd prime and q=ps with s being a positive integer. Let φ be a multiplicative character of Fq of order 4. Then

    φ(1)={1,if  p1(mod8) or p5(mod8) and s is even,1,if  p5(mod8) and s is odd.

    Proof. This corollary follows immediately from Lemma 2.4.

    Let ^Fq be the dual group consisting of all multiplicative characters of Fq with the generator φ. Then ord(φ)=q1 and the multiplicative character λ with order d with d|(q1) has the expression λ=φq1dt, where 0t<d and gcd(t,d)=1. Furthermore, the number of multiplicative character λ with order d is ϕ(d), where ϕ is Euler's totient function. We also need the following result.

    Lemma 2.5. Let λ be a multiplicative character of Fq with order gcd(4,q1). Then

    N(x4=b)=gcd(4,q1)1j=0λj(b).

    Proof. We divide this into the following three cases. Let λ be any multiplicative character of Fq with order d:=gcd(4,q1).

    CASE 1. b=0. Then x4=0 has only zero solution x=0 in Fq. That is, one has N(x4=0)=1. Since λ0(0)=1 and λj(0)=0 for 1jd1, it follows that

    d1j=0λj(0)=1=N(x4=0)

    as desired. So part (ⅰ) is proved in this case.

    CASE 2. b0 and x4=b has a solution in Fq. Let b=gk and x=gy. Then x4=b is equivalent to the congruence

    4yk(modq1). (2.1)

    Then the congruence (2.1) has exactly d=gcd(4,q1) solutions y. Hence x4=b has exactly d solutions in Fq. Namely, N(x4=b)=d.

    Let x0 be an element of Fq with x40=b. For any integer j with 0jd1, since d|4 implying that λ4=χ0, the trivial multiplicative character, we have

    λj(b)=λj(x40)=(λ4(x0))j=1.

    Therefore one derives that

    d1j=0λj(b)=d1j=01=d=N(x4=b)

    as desired. Hence part (ⅰ) holds in this case.

    CASE 3. b0 and x4=b has no solution in Fq. Then N(x4=b)=0 and (2.1) has no solution in Fq. Let b=gk. Then dk and λ(b)=λk(g)1 since λ(g) is a d-th primitive root of unity. Then

    λ(b)d1j=0λj(b)=d1j=0λj+1(b)=d1j=0λj(b),

    which implies that

    (λ(b)1)d1j=0λj(b)=0.

    Since λ(b)1, we have

    d1j=0λj(b)=0=N(x4=b)

    as required. Part (ⅰ) is proved in this case.

    This finishes the proof of Lemma 2.5.

    The following relation between the Gauss sum G(χ,ψ) of Fp and the Gauss sum G(χ,ψ) of Fq is due to Hasse and Davenport.

    Lemma 2.6. [12] Let ψ be an additive and χ a multiplicative character of Fp, not both of them trivial. Suppose that ψ and χ are lifting to characters ψ and χ, respectively, of the finite extension field Fq of Fp with [Fq:Fp]=s. Then

    G(χ,ψ)=(1)s1Gs(χ,ψ).

    For a certain special multiplicative character of Fp, the following result gives an explicit formula about the associated Jacobi sums.

    Lemma 2.7. [4] Let p1(mod4) be an odd prime number and let φ be a multiplicative character of Fp with ord(φ)=4. If θ is a generator of Fp with φ(θ)=i, then

    J(φ,φ)=a+bi,

    where a and b are integers such that a2+b2=p, a1(mod4) and baθp14(modp).

    The characters of Fp can be lifted to the characters of Fq, but not all the characters of Fq can be obtained by lifting a character of Fp. The following result characterizes all the characters of Fq that can be obtained by lifting a character of Fp.

    Lemma 2.8. [12] Let χ be a multiplicative character of Fq with q=ps. Then χ can be lifted from a multiplicative character χ of Fp if and only if χp1 is trivial.

    In this section, we present the proof of Theorem 1.1 as follows.

    Proof of Theorem 1.1. (i). Let p1(mod4). For xFq, from the trigonometric identity

    yFqexp(2πiTr(xy)p)={q,if  x=0,0,if  x0,

    we can deduce that

    N(x41+x42=c)=1qxFq(x1,x2)F2qexp(2πi Tr(x(x41+x42c))p)=1qxFq(yFqexp(2πi Tr(xy4)p))2exp(2πi Tr(xc)p)=q+1qxFq(yFqexp(2πi Tr(xy4)p))2ψ1(xc). (3.1)

    Denote

    Rx:=yFqexp(2πi Tr(xy4)p).

    Then by Lemma 2.5, we get

    Rx=1+zFqN(y4=z)exp(2πi Tr(xz)p)=1+zFq(1+φ(z)+φ2(z)+φ3(z))ψ1(xz),

    where φ is a multiplicative character of Fq with ord(φ)=4. Then φ(g)=±i. WLOG, in what follows, we set φ(g)=i.

    Note that φ2=η and φ3=¯φ, we know that

    Rx=zFqψ1(xz)+zFqφ(z)ψ1(xz)+zFqη(z)ψ1(xz)+zFq¯φ(z)ψ1(xz).

    Since

    zFqψ1(xz)=0,

    it follows from the definition of Gauss sum and Lemma 2.1 that

    Rx=zFqφ(z)ψ1(xz)+zFqη(z)ψ1(xz)+zFq¯φ(z)ψ1(xz)=G(φ,ψx)+G(η,ψx)+G(¯φ,ψx)=¯φ(x)G(φ,ψ1)+¯η(x)G(η,ψ1)+φ(x)G(¯φ,ψ1).

    Noticing that the value of η is real and η(x)=(N(x)p), from the Lemmas 2.1 and 2.2 we deduce that

    Rx=¯φ(x)G(φ,ψ1)+(N(x)p)(1)s1q+φ(x)¯G(φ,ψ1). (3.2)

    From (3.1)) and ((3.2), we derive that

    N(x41+x42=c)=q+1qxFq(¯φ(x)G(φ,ψ1)+(N(x)p)(1)s1q+φ(x)¯G(φ,ψ1))2ψ1(xc):=q+1qxFqTx. (3.3)

    Since φ3=¯φ, ¯φ2=φ2=η, φ2(x)=(N(x)p) and Lemma 2.1 implying that

    G(φ,ψ1)¯G(φ,ψ1)=q, it follows that

    Tx=(η(x)(G2(φ,ψ1)+¯G2(φ,ψ1))+2(1)s1q(φ(x)G(φ,ψ1)+φ(1)¯φ(x)¯G(φ,ψ1))+(1+2φ(1))q)ψ1(xc).

    By using the following simple facts

    η(x)=η(xc)η(c),φ(x)=φ(1)φ(c)φ(xc),¯φ(x)=φ(1)¯φ(c)¯φ(xc),

    we deduce that

    Tx=(η(xc)η(c)(G2(φ,ψ1)+¯G2(φ,ψ1))+(1+2φ(1))q+2(1)s1q(φ(1)φ(c)φ(xc)G(φ,ψ1)+1¯φ(c)¯φ(xc)¯G(φ,ψ1)))ψ1(xc). (3.4)

    Since xc runs over Fq as x runs through Fq, it follows from (3.3), (3.4) and the fact of xFqψ1(xc)=1 that

    N(x41+x42=c)=q+1q(G2(φ,ψ1)+¯G2(φ,ψ1)η(c)G(η,ψ1)(1+2φ(1))q+2(1)s1qφ(1)φ(c)G2(φ,ψ1)+(1)s1q2¯φ(c)¯G(φ,ψ1)G(¯φ,ψ1)).

    Note that

    1φ(c)=¯φ(c),1η(c)=η(c)=η(1)η(c)=η(c).

    From Lemmas 2.1 and 2.2, we have

    N(x41+x42=c)=q+1q((1)s1qη(c)(G2(φ,ψ1)+¯G2(φ,ψ1))(1+2φ(1))q+2(1)s1qφ(1)(¯φ(c)G2(φ,ψ1)+φ(c)¯G2(φ,ψ1))). (3.5)

    Noting that φ(1)=¯φ(1)=1=η(1), it follows from (3.5) that

    N(x41+x42=1)=q+1q(1+2φ(1))((1)s1q(G2(φ,ψ1)+¯G2(φ,ψ1))q).

    From Lemmas 2.2, 2.3 and 2.6-2.8, we can deduce that

    G2(φ,ψ1)=(a+bi)sq12,

    where a and b are integers such that

    a2+b2=p,a1(mod4),bagq14(modp).

    Letting a+bi=(a+bi)s gives us that

    G2(φ,ψ1)+¯G2(φ,ψ1)=2aq,G2(φ,ψ1)¯G2(φ,ψ1)=2biq. (3.6)

    Thus

    N(x41+x42=1)=q+(1+2φ(1))(2a(1)s11).

    By Corollary 2.1, we get

    N(x41+x42=1)={q+6a(1)s13,if either p1(mod8), or p5(mod8) and s is even,q2a(1)s1+1,if  p5(mod8) and s is odd. (3.7)

    From (3.5), (3.6), φ(g)=i and η(g)=1 we obtain that

    N(x41+x42=g)=q+2(1)s(a2bφ(1))(1+2φ(1)).

    By Corollary 2.1, we have

    N(x41+x42=g)={q+2(1)s(a2b)3,if either p1(mod8),or p5(mod8) and s is even,q+2(1)s(a+2b)+1,if  p5(mod8)and s is odd. (3.8)

    From (3.5), (3.6), φ(g2)=1 and η(g2)=1, we have

    N(x41+x42=g2)=q+2a(1)s1(12φ(1))(1+2φ(1)).

    By Corollary 2.1 it follows that

    N(x41+x42=g2)={q+2a(1)s3,if either p1(mod8),or p5(mod8) and s is even,q+6a(1)s1+1,if  p5(mod8) and s is odd. (3.9)

    From (3.5), (3.6), φ(g3)=i and η(g3)=1, we deduce

    N(x41+x42=g3)=q+2(1)s(a+2bφ(1))(1+2φ(1)).

    By Corollary 2.1 we have

    N(x41+x42=g3)={q+2(1)s(a+2b)3,if either p1(mod8),or p5(mod8) and s is even,q+2(1)s(a2b)+1,if  p5(mod8) and s is odd. (3.10)

    From (3.7), (3.8), (3.9) and (3.10), we can conclude the proof of part (i).

    (ii). Let p3(mod4) and q1(mod4). Since p3(mod4) implying that

    q=ps{1(mod4),if s is even,3(mod4),if s is odd, (3.11)

    one must have that s is even. Let Nk be the number of solutions of x41+x42++x4k=0 over Fq. Myerson [13] gave the value of

    N2=4q3,N3=q26rq+6r,

    where r is uniquely determined by

    q=r2+4t2,r1(mod4), and if p1(mod4), then (r,p)=1.

    Since

    N3=(x1,x2,x3)F3qx41+x42+x43=01=(x1,x2)F2qx41+x42=01+x3Fqx41+x42=x431
    =N2+(q1)N(x41+x42=1),

    one has

    N(x41+x42=1)=N3N2q1=q2(6r+4)q+6r+3q1. (3.12)

    From (3.11) and Corollary 2.1, we have φ(1)=1 if s is even.

    By (3.5), one has

    N(x41+x42=1)=q+1q((1)s1q(G2(φ,ψ1)+¯G2(φ,ψ1))(1+2φ(1))q)=q1q(q(G2(φ,ψ1)+¯G2(φ,ψ1))+3q) (3.13)

    From (3.12) and (3.13), we can deduce

    G2(φ,ψ1)+¯G2(φ,ψ1)=6rq.

    Let G2(φ,ψ1)=3rq+Bi. By G2(φ,ψ1)¯G2(φ,ψ1)=q2, one has

    B=±q29r2q.

    So we can write G2(φ,ψ1)=3rq±q29r2q i. From (3.5), one has

    N(x41+x42=c)=(q12φ(1)+6rη(c)(1)s1)+2q9r(1)s1((±¯φ(c))+(φ(c)))i.

    This finishes the proof of (ii).

    (iii). Let p3(mod4) and q3(mod4). Since gcd(4,q1)=gcd(2,q1). By Lemma 2.5, one has N(x4=A)=N(x2=A). It follows that

    N(x41+x42=c)=(x1,x2)F2qc1+c2=cN(x41=c1)N(x42=c2)=(x1,x2)F2qc1+c2=cN(x21=c1)N(x22=c2)=(x1,x2)F2qc1+c2=c(1+η(c1))(1+η(c2))=q+c1Fqη(c1)+c1Fqη(c2)+c1Fqη(c1c2)=q+xFqη(cxx2)=q+xFqη(cx11).=q+yFqη(y1)=q+1.

    This finishes the proof of part (iii), and hence that of Theorem 1.1.

    Proof of Corollary 1.2. (i). Let q1(mod4). From Theorem 1.1, one has |a|q and |b|q, therefore one deduces that |a±2b|3q. Then we derive the desired result |N(x41+x42=c)q|7q by triangle inequality.

    (ii). Let p1(mod4) and q3(mod4). From Theorem 1.1, one has |r|q, q9qq9rq+9q and |((±¯φ(c))+(φ(c)))i|2. From this, we deduce that

    |N(x41+x42=c)q||3+6r+4q4r|3+6r+4q+9r3+6r+42q(7+42)q

    as required. The proof of Corollary 1.2 is complete.

    In this final section, we provide two examples to demonstrate the validity of our main result Theorem 1.1.

    Example 4.1. For finite field F5, it is easy to see that 2 is a generator of F5. Note that s=1. Then a=a=1 and b=b=2.

    Since ind2(1)0(mod4), ind2(2)1(mod4), ind2(3)3(mod4), ind2(2)2(mod4). From Theorem 1.1, one can compute and get that

    N(x41+x42=1)=8,N(x41+x42=2)=16,
    N(x41+x42=3)=N(x41+x42=4)=0.

    Example 4.2. Observe that x22 is irreducible over F5. Let α be a root of x22 over its split field. Then F5(α) is an extension field of F5 with order 25, and we denote it by F25, where

    F25={x+yαxF5,yF5}.

    For any xi+yiF25 with i=1,2, we define

    (x1+y1α)+(x2+y2α):=((x1+x2)(mod5)+((y1+y2)(mod5))α

    and

    (x1+y1α)(x2+y2α):=(x1x2+2y1y2)(mod5)+((x1y2+x2y1)(mod5))α.

    By matlab programme, we confirm that the element 2+4α is a generator of F25.

    Note that s=2, a=1, b=2. Then a=3 and b=4. Since ind2+4α(1)0(mod4) and ind2+4α(α)3(mod4), it follows from Theorem 1.1 that

    N(x41+x42=1)=40,N(x41+x42=α)=32.

    The authors are thankful for the anonymous referees for their careful reading of the manuscript and helpful comments. They also thank Dr. Chaoxi Zhu and Dr. Lingfeng Ao for many helpful suggestions.

    We declare that we have no conflict of interest.



    [1] A. Adolphson and S. Sperber, p-Adic estimates for exponential sums and the theorem of ChevalleyWarning, Ann. Sci.'Ecole Norm. Sup., 20 (1987), 545-556. doi: 10.24033/asens.1543
    [2] A. Adolphson and S. Sperber, p-Adic estimates for exponential sums. In: F.Baldassarri, S. Bosch, B. Dwork (eds) p-adic Analysis. Lecture Notes in Mathematics, Springer, Berlin, 1990.
    [3] J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255-261. doi: 10.2307/2373163
    [4] B. Berndt, R. Evans, K. Williams, Gauss and Jacobi Sums, Wiley-Interscience, New York, 1998.
    [5] L. Carlitz, The numbers of solutions of a particular equation in a finite field, Publ. Math. Debrecen, 4 (1956), 379-383.
    [6] S. Chowla, J. Cowles and M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502-506. doi: 10.1016/0022-314X(77)90010-5
    [7] S. F. Hong, Newton polygons of L-functions associtated with exponential sums of polynomials of degree four over finite fields, Finite Fields Th. App., 7 (2001), 205-237. doi: 10.1006/ffta.2000.0287
    [8] S. F. Hong, Newton polygons of L-functions associtated with exponential sums of polynomials of degree six over finite fields, J. Number Theory, 97 (2002), 368-396. doi: 10.1016/S0022-314X(02)00006-9
    [9] S. F. Hong, L-functions of twisted diagonal exponential sums over finite fields, Proc. Amer. Soc., 135 (2007), 3099-3108. doi: 10.1090/S0002-9939-07-08873-9
    [10] S. F. Hong, J. R. Zhao and W. Zhao, The universal Kummer congruences, J. Aust. Math. Soc., 94 (2013), 106-132. doi: 10.1017/S1446788712000493
    [11] S. N. Hu, S. F. Hong and W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135-153. doi: 10.1016/j.jnt.2015.04.006
    [12] R. Lidl, H. Niederreiter, Finite Fields, second ed., Cambridge University Press, Cambridge, 1997.
    [13] G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95-99. doi: 10.1016/0022-314X(79)90023-4
    [14] J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247-257. doi: 10.1016/0022-314X(92)90091-3
    [15] A. Weil, On some exponential sums, Proc. Natu. Acad. Sci., 34 (1948), 204-207. doi: 10.1073/pnas.34.5.204
    [16] W. P. Zhang and J. Y. Hu, The number of solutions of the diagonal cubic congruence equation mod p, Math. Rep. (Bucur.), 20 (2018), 73-80.
    [17] J. Y. Zhao, S. F. Hong and C. X. Zhu, The number of rational points of certain quartic diagonal hypersurfaces over finite fields, AIMS Math., 5 (2020), 2710-2731. doi: 10.3934/math.2020175
  • This article has been cited by:

    1. Shuangnian Hu, Rongquan Feng, On the number of solutions of two-variable diagonal sextic equations over finite fields, 2022, 7, 2473-6988, 10554, 10.3934/math.2022588
    2. Shuangnian Hu, Rongquan Feng, The number of solutions of cubic diagonal equations over finite fields, 2023, 8, 2473-6988, 6375, 10.3934/math.2023322
    3. Shuangnian HU, Shihan WANG, Yanyan LI, Yujun NIU, Note on the Number of Solutions of Cubic Diagonal Equations over Finite Fields, 2023, 28, 1007-1202, 369, 10.1051/wujns/2023285369
    4. Shuangnian Hu, Yanyan Li, Rongquan Feng, Counting rational points of quartic diagonal hypersurfaces over finite fields, 2023, 9, 2473-6988, 2167, 10.3934/math.2024108
    5. Wenxu Ge, Weiping Li, Tianze Wang, A note on some diagonal cubic equations over finite fields, 2024, 9, 2473-6988, 21656, 10.3934/math.20241053
    6. Weitao Xie, Jiayu Zhang, Wei Cao, On the number of the irreducible factors of $ x^{n}-1 $ over finite fields, 2024, 9, 2473-6988, 23468, 10.3934/math.20241141
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4595) PDF downloads(411) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog