
AIMS Mathematics, 2020, 5(4): 28432857. doi: 10.3934/math.2020182
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Fractional order SEIR model with generalized incidence rate
1 Faculty of Natural and Agricultural Sciences, University of the Free State, South Africa
2 Department of mathematics City university of Science and Information Technology, Peshawar, KP, Pakistan
3 Department of mathematics university of Peshawar, KP, Pakistan
4 Department of mathematics Abdul Wali Khan university, Mardan, KP, Pakistan
Received: , Accepted: , Published:
References
1. M. A. Khan, Q. Badshah, S. Islam, et al. Global dynamics of SEIRS epidemic model with nonlinear generalized incidences and preventive vaccination, Adv. Diff. Equ., 2015 (2015), 88.
2. S. Ullah, M. A. Khan, and J. F. GomezAguilar, Mathematical formulation of hepatitis B virus with optimal control analysis, Optim. Cont. Appl. Meth., 40 (2019), 117.
3. F. B. Agusto and M. A. Khan, Optimal control strategies for dengue transmission in Pakistan, Math. Biosci., 305 (2018), 102121.
4. M. A. Khan, K. Shah, Y. Khan, et al. Mathematical modeling approach to the transmission dynamics of pine wilt disease with saturated incidence rate, Int. J. Biomath., 11 (2018), 1850035.
5. F. Rao, P. S. Mandal and Y. Kang, Complicated endemics of an SIRS model with a generalized incidence under preventive vaccination and treatment controls, Appl. Math. Model., 67 (2019), 3861.
6. W. O. Kermack, A. G. MCKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. A, 115 (1927), 700721.
7. V. Capasso and G. Serio, A generalization of the KermackMckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 4161.
8. A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 5760.
9. A. Denes, G. Rost, Global stability for SIR and SIRS models with nonlinear incidence and removal terms via dulac functions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 11011117.
10. D. P. Gao, N. J. Huang, S. M. Kang, et al. Global stability analysis of an SVEIR epidemic model with general incidence rate, Bound. Value Probl., 2018 (2018), 42.
11. D. P. Ahokpossi, A. Atangana and D. P. Vermeulen, Modelling groundwater fractal flow with fractional differentiation via MittagLeffler law, Eur. Phy. J. Plus, 132 (2017), 165.
12. S. Ullah, M. A. Khan and M. Farooq, A fractional model for the dynamics of TB virus, Cha. Solit. Frac., 116 (2018), 6371.
13. M. A. Khan, Y. Khan and S. Islam, Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment, Phy. A, 493 (2018), 210227.
14. Y. Khan, N. Faraz, A. Yildirim, et al. Fractional variational iteration method for fractional initialboundary value problems arising in the application of nonlinear science, Comput. Math. Appl., 62 (2011), 22732278.
15. Y. Khan, Q. Wu, N. Faraz, et al. A new fractional analytical approach via a modified RiemannLiouville derivative, Appl. Math. Lett., 25 (2012), 13401346.
16. Y. Khan, N. Faraz, S. KUMARA, et al. A coupling method of homotopy perturbation and Laplace transformation for fractional models, U.P.B. Sci. Bull. Series A, 74 (2012), 5768.
17. Y. X. Jun, D. Baleanu, Y. Khan, et al. Local Fractional Variational Iteration Method for Diffusion and Wave Equations on Cantor Sets, Rom. J. Phys., 59 (2014), 3648.
18. I. Podlubny, Fractional Differential Equations, Academic Press, California, USA, 1999.
19. M. Caputo and M. Fabrizio, A New Definition of Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., 1 (2015), 7385.
20. A. Atangana and D. Baleanu, New Fractional Derivatives with Nonlocal and NonSingular Kernel: Theory and Application to Heat Transfer Model, Therm. Sci., 20 (2016), 763769.
21. M. Saeedian, M. Khalighi, N. AzimiTafreshi, et al. Memory effects on epidemic evolution: The susceptibleinfectedrecovered epidemic model, Phy. Rev. E, 95 (2017), 022409.
22. A. Mouaouine, A. Boukhouima, K. Hattaf, et al. A fractional order SIR epidemic model with nonlinear incidence rate, Adv. Diff. Eq., 2018 (2018), 19.
23. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: theory and applications, CRC, 1993.
24. H. Delavari, D. Baleanu and J. Sadati, Stability analysis of Caputo fractionalorder nonlinear systems revisited, Nonlinear Dyn., 67 (2012), 24332439.
25. C. V. D. Leon, Volterratype Lyapunov functions for fractionalorder epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 7585.
26. J. Li, Y. Yang, Y. Xiao, et al. A class of Lyapunov functions and the global stability of some epidemic models with nonlinear incidence, J. Appl. Anal. Comput., 6 (2016), 3846.
27. Z. M. Odibat and N. T. Shawagfeh, Generalized Taylors formula, Appl. Math. Comput., 186 (2007), 286293.
28. W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709726.
29. J. J. Wang, J. Z. Zhang and Z. Jin, Analysis of an SIR model with bilinear incidence rate, Nonlinear AnalReal, 11 (2010), 23902402.
30. X. Liu and L. Yang, Stability analysis of an SEIQV epidemic model with saturated incidence rate, Nonlinear AnalReal, 13 (2012), 26712679.
31. J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44 (1975), 331341.
32. D. L. DeAngelis, R. A. Goldstein and R. V. ONeill, A model for tropic interaction, Ecology, 56 (1975), 881892.
33. K. Hattaf, M. Mahrouf, J. Adnani, et al. Qualitative analysis of a stochastic epidemic model with specific functional response cand temporary immunity, Phys. A, 490 (2018), 591600.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)