
AIMS Mathematics, 2020, 5(3): 22262243. doi: 10.3934/math.2020147
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
An accurate solution for the generalized BlackScholes equations governing option pricing
Department of Mathematics, National Institute of Technology Calicut, Calicut  673601, India
Received: , Accepted: , Published:
References
1. B. Fischer, S. Myron, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654.
2. R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manage. Sci., 4 (1973), 141–183.
3. P. Wilmott, S. Howson, J. Dewynne, The mathematics of financial derivatives: A student introduction, Cambridge University Press, 1995.
4. J. C. Zhao, M. Davison, R. M. Corless, Compact finite difference method for American option pricing, J. Comput. Appl. Math., 206 (2007), 306–321.
5. M. K. Kadalbajoo, L. P. Tripathi, P. Arora, A robust nonuniform Bspline collocation method for solving the generalized Black–Scholes equation, IMA J. Numer. Anal., 34 (2014), 252–278.
6. M. K. Kadalbajoo, L. P. Tripathi, A. Kumar, A cubic Bspline collocation method for a numerical solution of the generalized Black–Scholes equation, Mathe. Comput. Modell., 55 (2012), 1483–1505.
7. R. Company, E. Navarro, J. R. Pintos, Numerical solution of linear and nonlinear Black–Scholes option pricing equations, Comput. Math. Appl., 56 (2008), 813–821.
8. M. K. Salahuddin, M. Ahmed S. K. Bhowmilk, A note on numerical solution of a linear BlackScholes model, GANIT: J. Bangladesh Math. Soc., 33 (2013), 103–115.
9. R. Mohammadi, Quintic Bspline collocation approach for solving generalized Black–Scholes equation governing option pricing, Comput. Math. Appl., 69 (2015), 777–797.
10. R. Valkov, Fitted finite volume method for a generalized Black–Scholes equation transformed on finite interval, Numer. Algorithms, 65 (2014), 195–220.
11. S. Wang, A novel fitted finite volume method for the Black–Scholes equation governing option pricing, IMA J. Numer. Anal., 24 (2004), 699–720.
12. M. Ehrhardt, R. E. Mickens, A fast, stable and accurate numerical method for the Black–Scholes equation of American options, Inter. J. Theor. Appl. Finance, 11 (2008), 471–501.
13. C. S. Rao, Numerical solution of generalized Black–Scholes model, Appl. Math. Comput., 321 (2018), 401–421.
14. J. Huang, Z. D. Cen, Cubic spline method for a generalized BlackScholes equation, Math. Probl. Eng., 2014 (2014).
15. R. E. Lynch, J. R. Rice, A highorder difference method for differential equations, Math. Comput., 34 (1980), 333–372.
16. R. D. Skeel, The secondorder backward differentiation formula is unconditionally zerostable, Appl. Numer. Math., 5 (1989), 145–149.
17. J. R. Cash, On the integration of stiff systems of ODEs using extended backward differentiation formulae, Numer. Math., 34 (1980), 235–246.
18. C. F. Curtiss, J. O. Hirschfelder, Integration of stiff equations, P. Natl. Acad. Sci., 38 (1952), 235–243.
19. W. Wyss, The fractional blackscholes equation, Fract. Calc. Appl. Anal., 3 (2000), 51–66.
20. J. R. Liang, J. Wang, W. J. Zhang, et al, Option pricing of a bifractional Black–Merton–Scholes model with the Hurst exponent H in [12, 1], Appl. Math. Lett., 23 (2010), 859–863.
21. M. L. Zheng, F. W. Liu, I. Turner, et al, A novel high order spacetime spectral method for the time fractional Fokker–Planck equation, SIAM J. Sci. Comput., 37 (2015), A701–A724.
22. R. H. De Staelen, A. S. Hendy, Numerically pricing double barrier options in a timefractional Black–Scholes model, Comput. Math. Appl., 74 (2017), 1166–1175.
23. M. M. Chawla, M. A. AlZanaidi, D. J. Evans, A class of generalized trapezoidal formulas for the numerical integration of, Inter. J. Comput. Math., 62 (1996), 131–142.
24. M. M. Chawla, M. A. AlZanaidi, D. J. Evans, Generalized trapezoidal formulas for parabolic equations, Inter. J. Comput. Math., 70 (1999), 429–443.
25. M. M. Chawla, M. A. AlZanaidi, D. J. Evans, Generalized trapezoidal formulas for convectiondiffusion equations, Inter. J. Comput. Math., 72 (1999), 141–154.
26. M. M. Chawla, M. A. AlZanaidi, D. J. Evans, Generalized trapezoidal formulas for the Black– Scholes equation of option pricing, Inter. J. Comput. Math., 80 (2003), 1521–1526.
27. O. A. Ladyzhenskaia, V. A Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Am. Math.Soc., 1968.
28. G. M. Lieberman, Second order parabolic differential equations, World Scientific, 1996.
29. D. Wei, Existence, uniqueness, and numerical analysis of solutions of a quasilinear parabolic problem, SIAM J. Numer. Anal., 29 (1992), 484–497.
30. A. Friedman, Partial differential equations of parabolic type, Courier Dover Publications, 2008.
31. V. Isakov, Inverse problems for partial differential equations, Springer International Publishing, 2017.
32. C. Vázquez, An upwind numerical approach for an American and European option pricing model, Appl. Math. Comput., 97 (1998), 273–286.
33. R. Kangro, R. Nicolaides, Far field boundary conditions for BlackScholes equations, SIAM J. Numer. Anal., 38 (2000), 1357–1368.
34. C. K. Cho, T. Kim, Y. H. Kwon, Estimation of local volatilities in a generalized Black–Scholes model, Appl. Math. Comput., 162 (2005), 1135–1149.
35. Z. Cen, A. Le, A robust and accurate finite difference method for a generalized Black–Scholes equation, J. Comput. Appl. Math., 235 (2011), 3728–3733.
36. J. M. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11 (1975), 3–5.
37. R. S. Varga, Matrix iterative analysis, Second Revised and Expanded Edition, 2009.
38. R. Teman, Numerical analysis, D. Reidel Publishing Company, Dordrecht, Holland, 2012.
39. K. Atkinson, W. Han, Theoretical numerical analysis: A functional analysis framework, Springer New York, 2001.
40. J. W. Thomas, Numerical partial differential equations: Finite difference methods, Springer New York, 2013.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)