AIMS Mathematics, 2020, 5(3): 1799-1819. doi: 10.3934/math.2020121

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A general result on the spectral radii of nonnegative k-uniform tensors

1 School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P. R. China
2 Department of Mathematics, Jilin Medical University, Jilin, 132013, P. R. China
3 Department of Mathematics Teaching, Guangzhou Civil Aviation College, Guangzhou, 510403, P. R. China

In this paper, we define $k$-uniform tensors for $k\geq 2$, which are more closely related to the $k$-uniform hypergraphs than the general tensors, and introduce the parameter $r^{(q)}_{i}(\mathbb{A})$ for a tensor $\mathbb{A}$, which is the generalization of the $i$-th slice sum $r_ {i}(\mathbb{A})$ (also the $i$-th average 2-slice sum $m_{i}(\mathbb{A})$). By using $r^{(q)}_{i}(\mathbb{A})$ for $q\geq1$, we obtain a general result on the sharp upper bound for the spectral radius of a nonnegative $k$-uniform tensor. When $k=2, q=1, 2, 3$, this result deduces the main results for nonnegative matrices in [1,8,27]; when $k\geq 3, q=1$, this result deduces the main results in [5,20]. We also find that the upper bounds obtained from different $q$ can not be compared. Furthermore, we can obtain some known or new upper bounds by applying the general result to $k$-uniform hypergraphs and $k$-uniform directed hypergraphs, respectively.
  Article Metrics


1. M. Adam, D. Aggeli, A. Aretaki, Some new bounds on the spectral radius of nonnegative matrices, AIMS Mathematics, 5 (2019), 701-716.

2. C. Berge, Hypergraph, Combinatorics of Finite Sets, 3 Eds., North-Holland, Amsterdam, 1973.

3. R. A. Brualdi, Introductory Combinatorics, 3 Eds., China Machine press, Beijing, 2002.

4. K. C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520.    

5. D. M. Chen, Z. B. Chen, X. D. Zhang, Spectral radius of uniform hypergraphs and degree sequences, Front. Math. China., 6 (2017), 1279-1288.

6. Z. M. Chen, L. Q. Qi, Circulant tensors with applications to spectral hypergraph theory and stochastic process, J. Ind. Manag. Optim., 12 (2016), 1227-1247.    

7. J. Cooper, A. Dutle, Spectral of uniform hypergraph, Linear Algebra Appl., 436 (2012), 3268-3292.    

8. X. Duan, B. Zhou, Sharp bounds on the spectral radius of a nonnegative matrix, Linear Algebra Appl., 439 (2013), 2961-2970.    

9. A. Ducournau, A. Bretto, Random walks in directed hypergraphs and application to semisupervised image segmentation, Comput. Vis. Image Und., 120 (2014), 91-102.    

10. S. Friedland, A. Gaubert, L. Han, Perron-Frobenius theorems for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438 (2013), 738-749.    

11. G. Gallo, G. Longo, S. Pallottino, et al. Directed hypergraphs and applications, Discrete Appl. Math., 42 (1993), 177-201.    

12. M. Khan, Y. Fan, On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs, Linear Algebra Appl., 480 (2015), 93-106.    

13. C. Q. Li, Y. T. Li, X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.    

14. K. Li, L. S. Wang, A polynomial time approximation scheme for embedding a directed hypergraph on a ring, Inform. Process. Lett., 97 (2006), 203-207.    

15. W. Li, K. N. Michael, Some bounds for the spectral radius of nonnegative tensors, Numer. Math., 130 (2015), 315-335.    

16. L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 05), 1 (2005), 129-132.

17. L. H. Lim, Foundations of Numerical Multilinear Algebra: Decomposition and Approximation of Tensors, Dissertation, 2007.

18. L. H. Lim, Eigenvalues of Tensors and Some Very Basic Spectral Hypergraph Theory, Matrix Computations and Scientific Computing Seminar, 2008.

19. H. Y. Lin, B. Mo, B. Zhou, et al. Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs, Appl. Math. Comput., 285 (2016), 217-227.

20. C. Lv, L. H. You, X. D. Zhang, A Sharp upper bound on the spectral radius of a nonnegative k-uniform tensor and its applications to (directed) hypergraphs, J. Inequal. Appl., 32 (2020), 1-16.

21. H. Minc, Nonnegative Matrices, John and Sons Inc., New York, 1988.

22. K. Pearson, T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Combin., 30 (2014), 1233-1248.    

23. L. Q. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput, 40 (2005), 1302-1324.    

24. L. Q. Qi, H+-eigenvalues of Laplacian and signless Lapaclian tensors, Commun. Math. Sci., 12 (2014), 1045-1064.    

25. J. Y. Shao, A general product of tensors with applications, Linear Algebra Appl., 439 (2013), 2350-2366.    

26. J. Y. Shao, H. Y. Shan, L. Zhang, On some properties of the determinants of tensors, Linear Algebra Appl., 439 (2013), 3057-3069.    

27. R. Xing, B. Zhou, Sharp bounds on the spectral radius of a nonnegative matrix, Linear Algebra Appl., 449 (2014), 194-209.    

28. J. S. Xie, L. Q. Qi, Spectral directed hypergraph theory via tensors, Linear and Multilinear Algebra, 64 (2016), 780-794.    

29. Y. N. Yang, Q. Z. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31 (2010), 2517-2530.    

30. Y. N. Yang, Q. Z. Yang, On some properties of nonnegative weakly irreducible tensors, arXiv: 1111.0713v2, 2011.

31. L. H. You, X. H. Huang, X. Y. Yuan, Sharp bounds for spectral radius of nonnegative weakly irreducible tensors, Front. Math. China., 14 (2019), 989-1015.    

32. X. Y. Yuan, M. Zhang, M. Lu, Some upper bounds on the eigenvalues of uniform hypergraphs, Linear Algebra Appl., 484 (2015), 540-549.    

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved