Citation: Chuang Lv, Lihua You, Yufei Huang. A general result on the spectral radii of nonnegative k-uniform tensors[J]. AIMS Mathematics, 2020, 5(3): 1799-1819. doi: 10.3934/math.2020121
[1] | M. Adam, D. Aggeli, A. Aretaki, Some new bounds on the spectral radius of nonnegative matrices, AIMS Mathematics, 5 (2019), 701-716. |
[2] | C. Berge, Hypergraph, Combinatorics of Finite Sets, 3 Eds., North-Holland, Amsterdam, 1973. |
[3] | R. A. Brualdi, Introductory Combinatorics, 3 Eds., China Machine press, Beijing, 2002. |
[4] | K. C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520. |
[5] | D. M. Chen, Z. B. Chen, X. D. Zhang, Spectral radius of uniform hypergraphs and degree sequences, Front. Math. China., 6 (2017), 1279-1288. |
[6] | Z. M. Chen, L. Q. Qi, Circulant tensors with applications to spectral hypergraph theory and stochastic process, J. Ind. Manag. Optim., 12 (2016), 1227-1247. |
[7] | J. Cooper, A. Dutle, Spectral of uniform hypergraph, Linear Algebra Appl., 436 (2012), 3268-3292. |
[8] | X. Duan, B. Zhou, Sharp bounds on the spectral radius of a nonnegative matrix, Linear Algebra Appl., 439 (2013), 2961-2970. |
[9] | A. Ducournau, A. Bretto, Random walks in directed hypergraphs and application to semisupervised image segmentation, Comput. Vis. Image Und., 120 (2014), 91-102. |
[10] | S. Friedland, A. Gaubert, L. Han, Perron-Frobenius theorems for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438 (2013), 738-749. |
[11] | G. Gallo, G. Longo, S. Pallottino, et al. Directed hypergraphs and applications, Discrete Appl. Math., 42 (1993), 177-201. |
[12] | M. Khan, Y. Fan, On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs, Linear Algebra Appl., 480 (2015), 93-106. |
[13] | C. Q. Li, Y. T. Li, X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50. |
[14] | K. Li, L. S. Wang, A polynomial time approximation scheme for embedding a directed hypergraph on a ring, Inform. Process. Lett., 97 (2006), 203-207. |
[15] | W. Li, K. N. Michael, Some bounds for the spectral radius of nonnegative tensors, Numer. Math., 130 (2015), 315-335. |
[16] | L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 05), 1 (2005), 129-132. |
[17] | L. H. Lim, Foundations of Numerical Multilinear Algebra: Decomposition and Approximation of Tensors, Dissertation, 2007. |
[18] | L. H. Lim, Eigenvalues of Tensors and Some Very Basic Spectral Hypergraph Theory, Matrix Computations and Scientific Computing Seminar, 2008. |
[19] | H. Y. Lin, B. Mo, B. Zhou, et al. Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs, Appl. Math. Comput., 285 (2016), 217-227. |
[20] | C. Lv, L. H. You, X. D. Zhang, A Sharp upper bound on the spectral radius of a nonnegative k-uniform tensor and its applications to (directed) hypergraphs, J. Inequal. Appl., 32 (2020), 1-16. |
[21] | H. Minc, Nonnegative Matrices, John and Sons Inc., New York, 1988. |
[22] | K. Pearson, T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Combin., 30 (2014), 1233-1248. |
[23] | L. Q. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput, 40 (2005), 1302-1324. |
[24] | L. Q. Qi, H^{+}-eigenvalues of Laplacian and signless Lapaclian tensors, Commun. Math. Sci., 12 (2014), 1045-1064. |
[25] | J. Y. Shao, A general product of tensors with applications, Linear Algebra Appl., 439 (2013), 2350-2366. |
[26] | J. Y. Shao, H. Y. Shan, L. Zhang, On some properties of the determinants of tensors, Linear Algebra Appl., 439 (2013), 3057-3069. |
[27] | R. Xing, B. Zhou, Sharp bounds on the spectral radius of a nonnegative matrix, Linear Algebra Appl., 449 (2014), 194-209. |
[28] | J. S. Xie, L. Q. Qi, Spectral directed hypergraph theory via tensors, Linear and Multilinear Algebra, 64 (2016), 780-794. |
[29] | Y. N. Yang, Q. Z. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31 (2010), 2517-2530. |
[30] | Y. N. Yang, Q. Z. Yang, On some properties of nonnegative weakly irreducible tensors, arXiv: 1111.0713v2, 2011. |
[31] | L. H. You, X. H. Huang, X. Y. Yuan, Sharp bounds for spectral radius of nonnegative weakly irreducible tensors, Front. Math. China., 14 (2019), 989-1015. |
[32] | X. Y. Yuan, M. Zhang, M. Lu, Some upper bounds on the eigenvalues of uniform hypergraphs, Linear Algebra Appl., 484 (2015), 540-549. |