Research article

Non-autonomous 3D Brinkman-Forchheimer equation with singularly oscillating external force and its uniform attractor

  • Received: 10 October 2019 Accepted: 09 January 2020 Published: 21 January 2020
  • MSC : 35B40, 35B41, 35Q35

  • For $\rho\in [0, 1)$ and $\varepsilon \gt 0$, the non-autonomous 3D Brinkman-Forchheimer equation with singularly oscillating external force $ \begin{align*} &u_t-\nu\Delta u+au+b|u|u+c|u|^\beta u+\nabla p = f_0(x,t)+\varepsilon^{-\rho}f_1(x,\frac{t}{\varepsilon}),\\ &\mathrm{div}u = 0 \end{align*} $ are considered, together with the averaged equation $ \begin{align*} &u_t-\nu\Delta u+au+b|u|u+c|u|^\beta u+\nabla p = f_0(x,t),\\ &\mathrm{div}u = 0 \end{align*} $ formally corresponding to the limiting case $\varepsilon = 0$. First, within the restriction $\rho \lt 1$ and under suitable translation-compactness assumptions on the external forces, the uniform (w.r.t.$\varepsilon$) boundedness of the related uniform attractors $\mathcal{A}^\varepsilon$ is established when $1 \lt \beta\leq 4/3$. This fact is not at all intuitive, since in principle the blow up of the oscillation amplitude might overcome the averaging effect due to the term $\frac{t}{\varepsilon}$ in $f_1$. Next, the convergence of the attractor $\mathcal{A}^\varepsilon$ of the first equation to the attractor $\mathcal{A}^0$ of the second one as $\varepsilon\rightarrow 0^+$ is established.

    Citation: Xueli Song, Jianhua Wu. Non-autonomous 3D Brinkman-Forchheimer equation with singularly oscillating external force and its uniform attractor[J]. AIMS Mathematics, 2020, 5(2): 1484-1504. doi: 10.3934/math.2020102

    Related Papers:

  • For $\rho\in [0, 1)$ and $\varepsilon \gt 0$, the non-autonomous 3D Brinkman-Forchheimer equation with singularly oscillating external force $ \begin{align*} &u_t-\nu\Delta u+au+b|u|u+c|u|^\beta u+\nabla p = f_0(x,t)+\varepsilon^{-\rho}f_1(x,\frac{t}{\varepsilon}),\\ &\mathrm{div}u = 0 \end{align*} $ are considered, together with the averaged equation $ \begin{align*} &u_t-\nu\Delta u+au+b|u|u+c|u|^\beta u+\nabla p = f_0(x,t),\\ &\mathrm{div}u = 0 \end{align*} $ formally corresponding to the limiting case $\varepsilon = 0$. First, within the restriction $\rho \lt 1$ and under suitable translation-compactness assumptions on the external forces, the uniform (w.r.t.$\varepsilon$) boundedness of the related uniform attractors $\mathcal{A}^\varepsilon$ is established when $1 \lt \beta\leq 4/3$. This fact is not at all intuitive, since in principle the blow up of the oscillation amplitude might overcome the averaging effect due to the term $\frac{t}{\varepsilon}$ in $f_1$. Next, the convergence of the attractor $\mathcal{A}^\varepsilon$ of the first equation to the attractor $\mathcal{A}^0$ of the second one as $\varepsilon\rightarrow 0^+$ is established.


    加载中


    [1] R. C. Gilver, S. A. Altobelli, A determination of effective viscosity for the Brinkman-Forchheimer flow model, J. Fluid Mech., 258 (1994), 355-370. doi: 10.1017/S0022112094003368
    [2] D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, Int. J. Heat Fluid Fl., 12 (1991), 269-272. doi: 10.1016/0142-727X(91)90062-Z
    [3] K. Vafai, S. J. Kim, Fluid mechanics of the interface region between a porous medium and a fluid layer-an exact solution, Int. J. Heat Fluid Fl., 11 (1990), 254-256. doi: 10.1016/0142-727X(90)90045-D
    [4] K. Vafai, S. J. Kim, On the limitations of the Brinkman-Forchheimer-extended Darcy equation, Int. J. Heat Fluid Fl., 16 (1995), 11-15. doi: 10.1016/0142-727X(94)00002-T
    [5] S. Whitaker, The Forchheimer equation: a theoretical development, Transp. Porous Media, 25 (1996), 27-62. doi: 10.1007/BF00141261
    [6] M. M. Bhatti, A. Zeeshan, R. Ellahi, et al. Mathematical modelling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium, Adv. Powder Technol., 29 (2018), 1189-1197. doi: 10.1016/j.apt.2018.02.010
    [7] M. Marin, S. Vlase, R. Ellahi, et al. On the Partition of Energies for the Backward in Time Problem of Thermoelastic Materials with a Dipolar Structure, Symmetry, 11 (2019), 863.
    [8] H. M. Zhang, C. Yuan, G. S. Yang, et al. A novel constitutive modelling approach measured under simulated freeze-thaw cycles for the rock failure, Engineering with Computers, 2019.
    [9] A. O. Celebi, V. Kalantarov, Continuous dependence for the covective Brinkman-Forchheimer equations, Appl. Anal., 84 (2005), 877-888. doi: 10.1080/00036810500148911
    [10] A. O. Celebi, V. Kalantarov, D. Uğurlu, On continuous dependence on coefficients of the BrinkmanForchheimer equations, Appl. Math. Lett., 19 (2006), 801-807. doi: 10.1016/j.aml.2005.11.002
    [11] F. Franchi, B. Straughan, Continuous dependence and decay for the Forchheimer equations, Proc. R. Soc. Lond. A, 459 (2003), 3195-3202. doi: 10.1098/rspa.2003.1169
    [12] L. E. Payne, B. Straughan, Convergence and continuous dependence for the BrinkmanForchheimer equations, Stud. Appl. Math., 102 (1999), 419-439. doi: 10.1111/1467-9590.00116
    [13] Y. Liu, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Math. Comput. Model., 49 (2009), 1401-1415. doi: 10.1016/j.mcm.2008.11.010
    [14] Y. Liu, S. Z. Xiao, Y. W. Lin, Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain, Math. Comput. Simulat., 150 (2018), 66-82. doi: 10.1016/j.matcom.2018.02.009
    [15] Y. F. Li, C. H. Lin, Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe, Appl. Math. Comput., 244 (2014), 201-208.
    [16] D. Uğurlu, On the existence of a global attractor for the Brinkman-Forchheimer equation, Nonlinear Anal., 68 (2008), 1986-1992. doi: 10.1016/j.na.2007.01.025
    [17] B. Wang, S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Method. Appl. Sci., 31 (2008), 1479-1495. doi: 10.1002/mma.985
    [18] Y. You, C. Zhao, S. Zhou, The existence of uniform attractors for 3D Brinkman-Forchheimer equations, Discrete Contin. Dyn. Syst., 32 (2012), 3787-3800. doi: 10.3934/dcds.2012.32.3787
    [19] X. Song, Pullback $\mathcal{D}$-attractors for a non-autonomous Brinkman-Forchheimer system, J. Math. Res. Application, 33 (2013), 90-100.
    [20] X. Song, Q. Bao, Uniform attractors for three-dimensional Brinkman-Forchheimer system and some averaging problems, Far East J. Dyn. Syst., 25 (2014), 99-122.
    [21] L. Zhang, K. Su, S. Wen, Attractors for the 3D autonomous and nonautunomous BrinkmanForchheimer equations, Bound. Value. Probl., 17 (2016), 1-18.
    [22] Y. Ouyang, L. Yang, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 70 (2009), 2054-2059. doi: 10.1016/j.na.2008.02.121
    [23] V. V. Chepyzhov, M. I. Vishik, W. L. Wendland, On non-autonomous sine-Gorden type equations with a simple global attractor and some averaging, Discrete Contin. Dyn. Syst., 12 (2005), 27-38. doi: 10.3934/dcds.2005.12.27
    [24] M. Efendiev, S. V. Zelik, Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenenization, Ann. I. H. Poincaré-An, 19 (2002), 961-989.
    [25] M. Efendiev, S. V. Zelik, The regular attractor for the reaction-diddusion systems with rapidly oscillating in time and its averaging, Adv. Differential Equ., 8 (2003), 673-732.
    [26] V. V. Chepyzhov, M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor, J. Dyn. Differ. Equ., 19 (2007), 655-684. doi: 10.1007/s10884-007-9077-y
    [27] V. V. Chepyzhov, V. Pata, M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces, Nonlinearity, 22 (2009), 351-370. doi: 10.1088/0951-7715/22/2/006
    [28] V. V. Chepyzhov, M. I. Vishik, Non-autonomous Navier-Stokes system with a simple global attractor and some averaging problems, ESAIM: Control, Optimisation and Calculus of Variations, 8 (2002), 467-487. doi: 10.1051/cocv:2002056
    [29] Y. Qin, X. Yang, X. Liu, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal-Real, 13 (2012), 893-904. doi: 10.1016/j.nonrwa.2011.08.025
    [30] C. T. Anh, N. D. Toan, Nonclassical diffusion equations on $\mathbb{R}^N$ with singularly oscillating external forces, Appl. Math. Lett., 38 (2014), 20-26. doi: 10.1016/j.aml.2014.06.008
    [31] T. T. Medjo, Non-autonomous planetary 3D geostrophic equations with oscillating external force and its global attractor, Nonlinear Anal-Real, 12 (2011), 1437-1452. doi: 10.1016/j.nonrwa.2010.10.004
    [32] T. T. Medjo, Averaging of the planetary 3D geostrophic equations with oscillating external forces, Appl. Math. Comput., 218 (2012), 5910-5928.
    [33] T. T. Medjo, A non-autonomous two-phase flow model with oscillating external force and its global attractor, Nonlinear Anal., 75 (2012), 226-243. doi: 10.1016/j.na.2011.08.024
    [34] M. Bigert, A priori estimates for the difference of solutions to quasi-linear elliptic equations, Manuscripta Math., 133 (2010), 273-306. doi: 10.1007/s00229-010-0367-z
    [35] P. Constantin, C. Foias, Navier-Stokes equations, Chicago and London: Univ. Chicago Press, 1989.
    [36] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, second ed., in: Appl. Math. Sci., vol. 68, New York: Springe-Verlag, 1988.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2729) PDF downloads(365) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog