AIMS Mathematics, 2020, 5(2): 1372-1382. doi: 10.3934/math.2020094.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

S-function associated with fractional derivative and double Dirichlet average

1 Department of Mathematics & Statistics, Jai Narain Vyas University, Jodhpur-342005 (Raj.), India
2 Department of Applied Sciences, College of Agriculture, Sumerpur-Pali, Agriculture University of Jodhpur, Jodhpur-342304 (Raj.), India

The object of this article is to investigate the double Dirichlet averages of S-functions. Representations of such relations are obtained in terms of fractional derivative. Some interesting special cases are also stated.
  Figure/Table
  Supplementary
  Article Metrics

Keywords double Dirichlet average; S-function; fractional derivative; Gamma and Beta function

Citation: Jitendra Daiya, Dinesh Kumar. S-function associated with fractional derivative and double Dirichlet average. AIMS Mathematics, 2020, 5(2): 1372-1382. doi: 10.3934/math.2020094

References

  • 1. O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A, 40 (2007), 6287-6303.    
  • 2. B. C. Carlson, Lauricella's hypergeometric function FD, J. Math. Anal. Appl., 7 (1963), 452-470.    
  • 3. B. C. Carlson, A connection between elementary and higher transcendental functions, SIAM J. Appl. Math., 17 (1969), 116-148.    
  • 4. B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York, 1977.
  • 5. B. C. Carlson, B-splines, hypergeometric functions and Dirichlet average, J. Approx. Theory, 67 (1991), 311-325.    
  • 6. W. Zu Castell, Dirichlet splines as fractional integrals of B-splines, Rocky Mountain J. Math., 32 (2002), 545-559.    
  • 7. J. Daiya, Representing double Dirichlet average in term of K-Mittag-Leffler function associated with fractional derivative, Journal of Chemical, Biological and Physical Sciences, Section C, 6 (2016), 1034-1045.
  • 8. J. Daiya, J. Ram, Dirichlet averages of generalized Hurwitz-Lerch zeta function, Asian J. Math. Comput. Res., 7 (2015), 54-67.
  • 9. R. Diaz, E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat., 15 (2007), 179-192.
  • 10. A. Erdélyi, W. Magnus, F. Oberhettinger, et al. Tables of Integral Transforms, Vol. II, McGrawHill, New York-Toronto-London, 1954.
  • 11. S. C. Gupta and B. M. Agrawal, Double Dirichlet average and fractional derivative, Ganita Sandesh, 5 (1991), 47-52.
  • 12. R. K. Gupta, B. S. Shaktawat, D. Kumar, Certain relation of generalized fractional calculus associated with the generalized Mittag-Leffler function, J. Raj. Acad. Phy. Sci., 15 (2016), 117-126.
  • 13. R. K. Gupta, B. S. Shaktawat, D. Kumar, A study of Saigo-Maeda fractional calculus operators associated with the multiparameter K-Mittag-Leffler function, Asian J. Math. Comput. Res., 12 (2016), 243-251.
  • 14. R. K. Gupta, B. S. Shaktawat, D. Kumar, Generalized fractional differintegral operators of the K-series, Honam Math. J., 39 (2017), 61-71.    
  • 15. V. Kiryakova, A brief story about the operators of the generalized fractional calculus, Fract. Calc. Appl. Anal., 11 (2008), 203-220.
  • 16. D. Kumar, On certain fractional calculus operators involving generalized Mittag-Leffler function, Sahand Communication in Mathematical Analysis, 3 (2016), 33-45.
  • 17. D. Kumar, R. K. Gupta, D. S. Rawat, et al. Hypergeometric fractional integrals of multiparameter K-Mittag-Leffler function, Nonlinear Science Letters A: Mathematics, Physics and Mechanics, 9 (2018), 17-26.
  • 18. D. Kumar, S. D. Purohit, Fractional differintegral operators of the generalized Mittag-Leffler type function, Malaya J. Mat., 2 (2014), 419-425.
  • 19. D. Kumar, S. Kumar, Fractional integrals and derivatives of the generalized Mittag-Leffler type function, Internat. Sch. Res. Not., 2014 (2014), 1-5.    
  • 20. Shy-Der Lin, H. M. Srivastava, Some miscellaneous properties and applications of certain operators of fractional calculus, Taiwanese J. Math., 14 (2010), 2469-2495.    
  • 21. P. Massopust, B. Forster, Multivariate complex B-splines and Dirichlet averages, J. Approx. Theory, 162 (2010), 252-269.    
  • 22. E. Neuman, Stolarsky means of several variables, J. Inequal. Pure Appl. Math., 6 (2005), 1-10.
  • 23. E. Neuman, P. J. Van Fleet, Moments of Dirichlet splines and their applications to hypergeometric functions, J. Comput. Appl. Math., 53 (1994), 225-241.    
  • 24. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications ("Nauka i Tekhnika", Minsk, 1987), Gordon and Breach Science Publishers, UK, 1993.
  • 25. R. K. Saxena, J. Daiya, Integral transforms of the S-function, Le Mathematiche, 70 (2015), 147-159.
  • 26. R. K. Saxena, J. Daiya, A. Singh, Integral transforms of the k-Mittag-Leffler function $E_{k,\alpha ,\beta }^\gamma \left( z \right)$, Le Mathematiche, 69 (2014), 7-16.
  • 27. R. K. Saxena, T. K. Pogány, J. Ram, et al. Dirichlet averages of generalized multi-index MittagLeffler functions, Armen. J. Math., 3 (2010), 174-187.
  • 28. T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved