### AIMS Mathematics

2020, Issue 2: 879-893. doi: 10.3934/math.2020060
Research article

# Approximate solution of nonlinear Black–Scholes equation via a fully discretized fourth-order method

• Received: 06 October 2019 Accepted: 11 December 2019 Published: 06 January 2020
• MSC : 41A15, 65M20

• In this work, a new fourth-order finite difference (FD) approximation (for both structured and unstructured grid of nodes) is contributed and equipped with the fourth-order Runge–Kutta scheme to tackle the financial nonlinear partial differential equation (PDE) of Black–Scholes. This timedependent PDE problem is converted to a set of ordinary differential equations (ODEs). It is proved that under several criteria the procedure is time stable. Computational illustrations presented here, show that our approach is fast and accurate. The proposed technique reduces the computational cost, when more accurate results are requested.

Citation: Azadeh Ghanadian, Taher Lotfi. Approximate solution of nonlinear Black–Scholes equation via a fully discretized fourth-order method[J]. AIMS Mathematics, 2020, 5(2): 879-893. doi: 10.3934/math.2020060

### Related Papers:

• In this work, a new fourth-order finite difference (FD) approximation (for both structured and unstructured grid of nodes) is contributed and equipped with the fourth-order Runge–Kutta scheme to tackle the financial nonlinear partial differential equation (PDE) of Black–Scholes. This timedependent PDE problem is converted to a set of ordinary differential equations (ODEs). It is proved that under several criteria the procedure is time stable. Computational illustrations presented here, show that our approach is fast and accurate. The proposed technique reduces the computational cost, when more accurate results are requested.

 [1] Y. Adam, Highly accurate compact implicit methods and boundary conditions, J. Comput. Phys., 24 (1977), 10-22. doi: 10.1016/0021-9991(77)90106-1 [2] A. Akgül, F. Soleymani, How to construct a fourth-order scheme for Heston-Hull-White equation?, AIP Conference Proceedings, 2116 (2019), 240002. [3] Z. Al-Zhour, M. Barfeie, F. Soleymani, et al. A computational method to price with transaction costs under the nonlinear Black-Scholes model, Chaos Soliton. Fract., 127 (2019), 291-301. doi: 10.1016/j.chaos.2019.06.033 [4] J. Ankudinova, M. Ehrhardt, On the numerical solution of nonlinear Black-Scholes equations, Comput. Math. Appl., 56 (2008), 799-812. doi: 10.1016/j.camwa.2008.02.005 [5] A. Babucke, M. J. Kloker, Accuracy analysis of the fundamental finite-difference methods on non-uniform grids, Internal report, Stuttgart University, 2009. [6] L. V. Ballestra, C. Sgarra, The evaluation of American options in a stochastic volatility model with jumps: An efficient finite element approach, Comput. Math. Appl., 60 (2010), 1571-1590. doi: 10.1016/j.camwa.2010.06.040 [7] G. Barles, H. M. Soner, Option pricing with transaction costs and a nonlinear Black-Scholes equation, Financ. Stoch., 2 (1998), 369-397. doi: 10.1007/s007800050046 [8] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654. doi: 10.1086/260062 [9] R. Company, L. Jódar, J. R. Pintos, A numerical method for European option pricing with transaction costs nonlinear equation, Math. Comput. Model., 50 (2009), 910-920. doi: 10.1016/j.mcm.2009.05.019 [10] M. Cummins, F. Murphy, J. J. H. Miller, Topics in Numerical Methods for Finance, Springer, New York, 2012. [11] B. Düring, M. Fournié, A. Jüngel, High order compact finite difference schemes for a nonlinear Black-Scholes equation, Int. J. Theor. Appl. Financ., 6 (2003), 767-789. doi: 10.1142/S0219024903002183 [12] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press, UK, 1996. [13] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II, Springer-Verlag, Berlin Heidelberg, 1996. [14] D. J. Higham, An Introduction to Financial Option Valuation, Cambridge University Press, UK, 2004. [15] M. Jandačka, D. Ševčovič, On the risk adjusted pricing methodology based valuation of vanilla options and explanation of the volatility smile, J. Appl. Math., 2005 (2005), 235-258. doi: 10.1155/JAM.2005.235 [16] M. K. Kadalbajoo, A. Kumar, L. P. Tripathi, An efficient numerical method for pricing option under jump diffusion model, Int. J. Adv. Eng. Sci. Appl. Math., 7 (2015), 114-123. doi: 10.1007/s12572-015-0136-z [17] R. Knapp, A method of lines framework in mathematica, J. Numer. Anal. Indust. Appl. Math., 3 (2008), 43-59. [18] N. Krejić, M. Kumaresan, A. Rožnjik, VaR optimal portfolio with transaction costs, Appl. Math. Comput., 218 (2011), 4626-4637. [19] G. H. Meyer, The Time-Discrete Method of Lines for Options and Bonds: A PDE Approach, World Scientific Publishing, USA, 2015. [20] S. Milovanović, L. von Sydow, Radial basis function generated finite differences for option pricing problems, Comput. Math. Appl., 75 (2018), 1462-1481. doi: 10.1016/j.camwa.2017.11.015 [21] R. Mohammadi, Quintic B-spline collocation approach for solving generalized Black-Scholes equation governing option pricing, Comput. Math. Appl., 69 (2015), 777-797. doi: 10.1016/j.camwa.2015.02.018 [22] M. Monoyios, Option pricing with transaction costs using a Markov chain approximation, J. Econ. Dyn. Control, 28 (2004), 889-913. doi: 10.1016/S0165-1889(03)00059-9 [23] A. Parás, M. Avellaneda, Dynamic hedging portfolios for derivative securities in the presence of large transaction costs, Appl. Math. Financ., 1 (1994), 165-193. doi: 10.1080/13504869400000010 [24] P. Roul, A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options, Appl. Numer. Math., (2020), DOI: https://doi.org/10.1016/j.apnum.2019.11.004. [25] P. Roul, V. M. K. P. Goura, A new higher order compact finite difference method for generalised Black-Scholes partial differential equation: European call option, J. Comput. Appl. Math., 363 (2020), 464-484. doi: 10.1016/j.cam.2019.06.015 [26] T. Sauer, Numerical Analysis, 2 Eds., Pearson Publication, USA, 2012. [27] D. Ševčovič, M. Žitnanská, Analysis of the nonlinear option pricing model under variable transaction costs, Asia-Pac. Financ. Mark., 23 (2016), 153-174. doi: 10.1007/s10690-016-9213-y [28] R. U. Seydel, Tools for Computational Finance, 6 Eds, Springer, United Kingdom, 2017. [29] A. R. Soheili, F. Soleymani, Construction of some accelerated methods for solving scalar stochastic differential equations, Int. J. Comput. Sci. Math., 7 (2016), 537-547. doi: 10.1504/IJCSM.2016.081680 [30] A. R. Soheili, F. Soleymani, A new solution method for stochastic differential equations via collocation approach, Int. J. Comput. Math., 93 (2016), 2079-2091. doi: 10.1080/00207160.2015.1085029 [31] M. Sofroniou, R. Knapp, Advanced Numerical Differential Equation Solving in Mathematica, Wolfram Mathematica, Tutorial Collection, USA, 2008. [32] F. Soleymani, Pricing multi-asset option problems: A Chebyshev pseudo-spectral method, BIT, 59 (2019), 243-270. doi: 10.1007/s10543-018-0722-0 [33] F. Soleymani, A. Akgül, Improved numerical solution of multi-asset option pricing problem: A localized RBF-FD approach, Chaos Soliton. Fract.,119 (2019), 298-309. doi: 10.1016/j.chaos.2019.01.003 [34] D. Tavella, C. Randall, Pricing Financial Instruments - The Finite Difference Method, John Wiley & Sons Inc., New York, 2000. [35] M. Trott, The Mathematica GuideBook for Numerics, Springer, NY, USA, 2006. [36] P. Ursone, How to Calculate Options Prices and their Greeks, Wiely, UK, 2015. [37] P. R. Wellin, R. J. Gaylord, S. N. Kamin, An Introduction to Programming with Mathematica, Cambridge University Press, UK, 2005.

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

0.882 0.9

Article outline

## Figures and Tables

Figures(1)  /  Tables(2)

• On This Site