AIMS Mathematics, 2020, 5(2): 766-780. doi: 10.3934/math.2020052.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Ulam stability of linear differential equations using Fourier transform

1 PG and Research Department of Mathematics, Sacred Heart College, Tirupattur-635601, Vellore Dist., Tamil Nadu, India
2 Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea

The purpose of this paper is to study the Hyers-Ulam stability and generalized HyersUlam stability of general linear differential equations of nth order with constant coefficients by using the Fourier transform method. Moreover, the Hyers-Ulam stability constants are obtained for these differential equations.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Hyers-Ulam stability; generalized Hyers-Ulam stability; nth order linear differential equation; Fourier transform method; Hyers-Ulam constant

Citation: Murali Ramdoss, Ponmana Selvan-Arumugam, Choonkil Park. Ulam stability of linear differential equations using Fourier transform. AIMS Mathematics, 2020, 5(2): 766-780. doi: 10.3934/math.2020052

References

  • 1. Q. H. Alqifiary, S. Jung, Laplace transform and generalized Hyers-Ulam stability of linear differential equations, Electron. J. Differ. Eq., 2014 (2014), 1-11.    
  • 2. Q. H. Alqifiary, J. K. Miljanovic, Note on the stability of system of differential equations $\dot{x}(t)= f(t, x(t))$, Gen. Math. Notes, 20 (2014), 27-33.
  • 3. C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373-380.
  • 4. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2 (1950), 64-66.    
  • 5. R. Fukutaka, M. Onitsuka, Best constant in Hyers-Ulam stability of first-order homogeneous linear differential equations with a periodic coefficient, J. Math. Anal. Appl., 473 (2019), 1432-1446.    
  • 6. D. H. Hyers, On the stability of a linear functional equation, P. Natl. Acad. Sci. USA., 27 (1941), 222-224.    
  • 7. S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17 (2004), 1135-1140.    
  • 8. S. M. Jung, Hyers-Ulam stability of linear differential equations of first order (III), J. Math. Anal. Appl., 311 (2005), 139-146.    
  • 9. S. M. Jung, On the quadratic functional equation modulo a subgroup, Indian J. Pure Appl. Math., 36 (2005), 441-450.
  • 10. S. M. Jung, Hyers-Ulam stability of linear differential equations of first order (II), Appl. Math. Lett., 19 (2006), 854-858.    
  • 11. S. M. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl., 320 (2006), 549-561.    
  • 12. S. M. Jung, Approximate solution of a linear differential equation of third order, B. Malays. Math. Sci. So., 35 (2012), 1063-1073.
  • 13. V. Kalvandi, N. Eghbali, J. M. Rassias, Mittag-Leffler-Hyers-Ulam stability of fractional differential equations of second order, J. Math. Ext., 13 (2019), 29-43.
  • 14. T. Li, A. Zada, S. Faisal, Hyers-Ulam stability of nth order linear differential equations, J. Nonlinear Sci. Appl., 9 (2016), 2070-2075.    
  • 15. Y. Li, Y. Shen, Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett., 23 (2010), 306-309.    
  • 16. K. Liu, M. Feckan, D. O'Regan, et al. Hyers-Ulam stability and existence of solutions for differential equations with Caputo-Fabrizio fractional derivative, Mathematics, 7 (2019), 333.
  • 17. T. Miura, S. Jung, S. E. Takahasi, Hyers-Ulam-Rassias stability of the Banach space valued linear differential equation $y^{'} = \lambda y$, J. Korean Math. Soc., 41 (2004), 995-1005.
  • 18. R. Murali, A. P. Selvan, On the generalized Hyers-Ulam stability of linear ordinary differential equations of higher order, Int. J. Pure Appl. Math., 117 (2017), 317-326.
  • 19. M. Ramdoss, P. S. Arumugan, Fourier transforms and Ulam stabilities of linear differential equations, In: G. Anastassiou, J. Rassias, editors, Frontiers in Functional Equations and Analytic Inequalities, Springer, Cham, 2019, 195-217.
  • 20. M. Obloza, Hyers stability of the linear differential equation, Rockznik Nauk-Dydakt. Prace Mat., 13 (1993), 259-270.
  • 21. M. Obloza, Connection between Hyers and Lyapunov stability of the ordinary differential equations, Rockznik Nauk-Dydakt. Prace Mat., 14 (1997), 141-146.
  • 22. M. Onitsuka, Hyers-Ulam stability of first order linear differential equations of Carathéodory type and its application, Appl. Math. Lett., 90 (2019), 61-68.    
  • 23. M. Onitsuka, T. Shoji, Hyers-Ulam stability of first order homogeneous linear differential equations with a real valued coefficients, Appl. Math. Lett., 63 (2017), 102-108.    
  • 24. T. M. Rassias, On the stability of the linear mappings in Banach spaces, P. Am. Math. Soc., 72 (1978), 297-300.    
  • 25. I. A. Rus, Ulam stabilities of ordinary differential equations in Banach space, Carpathian J. Math., 26 (2010), 103-107.
  • 26. S. E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation $y'= \alpha y$, Bull. Korean Math. Soc., 39 (2002), 309-315.
  • 27. S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1960.
  • 28. G. Wang, M. Zhou, L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 21 (2008), 1024-1028.    
  • 29. J. R. Wang, A. Zada, W. Ali, Ulam's type stability of first-order impulsive differential equations with variable delay in quasi-Banach spaces, Int. J. Nonlin. Sci. Num., 19 (2018), 553-560.    
  • 30. X. Wang, M. Arif, A. Zada, β-Hyers-Ulam-Rassias stability of semilinear nonautonomous impulsive system, Symmetry, 11 (2019), 231.
  • 31. A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Gronwall Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60-65.
  • 32. A. Zada, S. O. Shah, Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacet. J. Math. Stat., 47 (2018), 1196-1205.
  • 33. A. Zada, S. Shaleena, T. Li, Stability analysis of higher order nonlinear differential equations in β-normed spaces, Math. Method. Appl. Sci., 42 (2019), 1151-1166.    
  • 34. A. Zada, M. Yar, T. Li, Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions, Ann. Univ. Paedagog. Crac. Stud. Math., 17 (2018), 103-125.

 

This article has been cited by

  • 1. Tae Hun Kim, Ha Nuel Ju, Hong Nyeong Kim, Seong Yoon Jo, Choonkil Park, Bihomomorphisms and biderivations in Lie Banach algebras, AIMS Mathematics, 2020, 5, 3, 2196, 10.3934/math.2020145

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved