Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

Spatial dynamics of predator-prey system with hunting cooperation in predators and type I functional response

1 School of Allied Sciences, Department of Mathematics, Graphic Era (deemed to be) University, Dehradun, Uttarakhand, PO 248 002, India
2 Department of Mathematics, Graphic Era Hill University, Dehradun, Uttarakhand, PO 248 002, India
3 Department of Mathematics, J C Bose University of Science and Technology, YMCA, Faridabad, Haryana, PO 121 006, India
4 Department of Mathematics, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, PO 484 887, India

## Abstract    Full Text(HTML)    Figure/Table    Related pages

In this paper, we have investigated a spatial predator-prey system with hunting cooperation in predators and type-I functional response. Using linear stability analysis, we obtain the stipulations for diffusive instability and identify the corresponding domain in the space of control parameters. Using qualitative and quantitative analysis, we obtain complex patterns, namely, spotted pattern, stripe pattern and mixed pattern in the Turing domain, by varying the rate of hunting cooperation in predators and diffusion coefficients of prey and predators. The results focus on the effect of hunting cooperation in pattern dynamics of a diffusive predator-prey model and help us in better understanding of the dynamics of the predator-prey interaction in real environment.
Figure/Table
Supplementary
Article Metrics

Citation: Teekam Singh, Ramu Dubey, Vishnu Narayan Mishra. Spatial dynamics of predator-prey system with hunting cooperation in predators and type I functional response. AIMS Mathematics, 2020, 5(1): 673-684. doi: 10.3934/math.2020045

References

• 1. J. L. Aragon, M. Torres, D. Gil, et al. Turing patterns with pentagonal symmetry, Phys. Rev. E, 65 (2002), 051913-051921.
• 2. V. Ardizzone, P. Lewandowski, M. H. Luk, et al. Formation and control of turing patterns in a coherent quantum fluid, Sci. Rep., 3 (2013), 3016-3021.
• 3. L. A. Segel, J. L. Jackson, Dissipative structure: An explanation and an ecological example, J. Theor. Biol., 37 (1972), 545-559.
• 4. S. Yuan, C. Xu, T. Zhang, Spatial dynamics in a predator-prey model with herd behavior, Chaos, 23 (2013), 033102-033112.
• 5. X. C. Zhang, G. Q. Sun, Z. Jin, Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response, Phys. Rev. E, 85 (2012), 021924-021937.
• 6. U. Dieckmann, R. Law, J. A. Metz, The Geometry of Ecological Interactions: Simplifying Spatial Complexity, Cambridge University Press, 2000.
• 7. S. A. Levin, L. A. Segel, Hypothesis for origin of planktonic patchiness, Nature, 259 (1976), 659-659.
• 8. P. K. Maini, D. L. Benson, J. A. Sherratt, Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients, Math. Med. Biol., 9 (1992), 197-213.
• 9. G. R. Shaver, Spatial Heterogeneity: Past, Present, and Future: Ecosystem Function in Heterogeneous Landscapes, Springer-Verlag, New York, 2005.
• 10. F. Vinatier, P. Tixier, P. F. Duyck, et al. Factors and mechanisms explaining spatial heterogeneity: A review of methods for insect populations, Methods Ecol. Evol., 2 (2011), 11-22.
• 11. A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. B, 237 (1952), 37-72.
• 12. A. Okubo, S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Springer Science and Business Media, 2013.
• 13. A. Goldbeter, Dissipative structures in biological systems: Bistability, oscillations, spatial patterns and waves, Philos. Trans. R. Soc. A, 376 (2018), 1-25.
• 14. X. Guan, W. Wang, Y. Cai, Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Anal. Real World Appl., 12 (2011), 2385-2395.
• 15. K. Konishi, N. Hara, Stabilization of a spatially uniform steady state in two systems exhibiting Turing patterns, Phys. Rev. E, 97 (2018), 052201-052213.
• 16. A. Morozov, S. V. Petrovskii, B. L. Li, Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect, J. Theor. Biol., 238 (2006), 18-35.
• 17. J. D. Murray, A pre-pattern formation mechanism for animal coat markings, J. Theor. Biol., 88 (1981), 161-199.
• 18. W. Wang, Q. X. Liu, Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system, Phys. Rev. E, 75 (2007), 051913-051925.
• 19. T. Zhang, Y. Xing, H. Zang, et al. Spatiotemporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality, Nonlinear Dyn., 78 (2014), 265-277.
• 20. F. Courchamp, L. Berec, J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, 2008.
• 21. P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14 (1999), 401-405.
• 22. P. Aguirre, E. González-Olivares, S. Torres, Stochastic predator-prey model with Allee effect on prey, Nonlinear Anal. Real World Appl., 14 (2013), 768-779.
• 23. F. Courchamp, T. Clutton-Brock, B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405-410.
• 24. L. A. Dugatkin, Cooperation Among Animals: An Evolutionary Perspective, Oxford University Press, 1997.
• 25. E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma, et al. Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Appl. Math. Modell., 35 (2011), 366-381.
• 26. E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, et al. Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the Allee effect on prey, Nonlinear Anal. Real World Appl., 12 (2011), 2931-2942.
• 27. A. Morozov, S. V. Petrovskii, B. L. Li, Bifurcations and chaos in a predator-prey system with the Allee effect, Proc. Royal Soc. Lond. B, 271 (2004), 1407-1414.
• 28. F. Rao, Y. Kang, The complex dynamics of a diffusive prey-predator model with an Allee effect in prey, Ecol. Complex., 28 (2016), 123-144.
• 29. J. Wang, J. Shi, J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differ. Equations, 251 (2011), 1276-1304.
• 30. S. R. Zhou, Y. F. Liu, G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23-31.
• 31. A. Bompard, I. Amat, X. Fauvergue, et al. Host-parasitoid dynamics and the success of biological control when parasitoids are prone to Allee effects, PLoS One, 8 (2013), 76768-76779.
• 32. A. De-Roos, L. Persson, H. R. Thieme, Emergent Allee effects in top predators feeding on structured prey populations, Proc. Royal Soc. Lond. B, 270 (2003), 611-618.
• 33. A. Verdy, Modulation of predator-prey interactions by the Allee effect, Ecol. Modell., 221 (2010), 1098-1107.
• 34. M. T. Alves, F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419 (2017), 13-22.
• 35. S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in R4, Trans. Amer. Math. Soc., 286 (1984), 557-594.
• 36. S. R. Dunbar, Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinc orbits, SIAM J. Appl. Math., 46 (1986), 1057-1078.
• 37. R. Gardner, J. Smoller, The existence of periodic travelling waves for singularly perturbed predator-prey equations via the Conley Index, J. Differ. Equations, 47 (1983), 133-161.
• 38. X. Lin, P. Weng, C. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function, J. Dyn. Differ. Equations, 23 (2011), 903-921.