Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Periodic mild solutions of impulsive fractional evolution equations

1 Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, P. R. China
2 School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
3 Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynska doliná, 842 48 Bratislava, Slovakia, and Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia

Special Issues: Initial and Boundary Value Problems for Differential Equations

This paper studies the periodic mild solutions of impulsive fractional evolution equations. Firstly, the existence and stability of periodic solutions of impulsive fractional differential equations with varying lower limits for general impulses and small shifted impulses are considered. Secondly, the existence of periodic solutions of impulsive fractional differential equations with fixed lower limits is proved. Lastly, an example is given to demonstrate the result.
  Figure/Table
  Supplementary
  Article Metrics

References

1. M. Fečkan, J. Wang, M. Pospíšil, Fractional-Order Equations and Inclusions, De Gruyter, 2017.

2. J. Wang, M. Fečkan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831.

3. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006.

4. Y. Zhou, Attractivity for fractional differential equations in Banach space, Appl. Math. Lett., 75 (2018), 1-6.    

5. Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators, Fract. Calc. Appl. Anal., 21 (2018), 786-800.    

6. Y. Zhou, L. Shangerganesh, J. Manimaran, et al. A class of time-fractional reaction-diffusion equation with nonlocal boundary condition, Math. Meth. Appl. Sci., 41 (2018), 2987-2999.    

7. E. Kaslik, S. Sivasundaram, Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Analysis: Real World Applications, 13 (2012), 1489-1497.    

8. J. Wang, M. Fečkan, Y. Zhou, Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations, Commun. Nonlinear Sci., 18 (2013), 246-256.    

9. L. Ren, J. Wang, M. Feckan, Asymptotically periodic solutions for Caputo type fractional evolution equations, Fract. Calc. Appl. Anal., 21 (2018), 1294-1312.    

10. C. Cuevas, J. Souza, S-asymptotically ω-periodic solutions of semilinear fractional integrodifferential equations, Appl. Math. Lett., 22 (2009), 865-870.    

11. J. Diblík, M. Fečkan, M. Pospíšil, Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional difference equations, Appl. Math. Comput., 257 (2015), 230-240.

12. M. Fečkan, J. Wang, Periodic impulsive fractional differential equations, Adv. Nonlinear Anal., 8 (2019), 482-496.

13. Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.    

14. M. Fečkan, J. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations with noninstantaneous impulses, Nonautonomous Dynamical Systems, 1 (2014), 93-101.

15. H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.    

16. B. M. Garay, P. Kloeden, Discretization near compact invariant sets, Random and Computational Dynamics, 5 (1997), 93-124.

17. I. Murdock, C. Robinson, Qualitative dynamics from asymptotic expansions: Local theory, J. Differential Equations, 36 (1980), 425-441.    

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved