Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

New reproducing kernel functions in the reproducing kernel Sobolev spaces

1 Siirt University, Art and Science Faculty, Department of Mathematics, TR-56100 Siirt, Turkey
2 Siirt University, Faculty of Education, Department of Mathematics, TR-56100 Siirt, Turkey

Special Issues: Recent Advances in Fractional Calculus with Real World Applications

In this paper we construct some new reproducing kernel functions in the reproducing kernel Sobolev space. These functions are new in the literature. We can solve many problems by these functions in the reproducing kernel Sobolev spaces.
  Article Metrics

Keywords reproducing kernel functions; reproducing kernel Sobolev spaces

Citation: Ali Akgül, Esra Karatas Akgül, Sahin Korhan. New reproducing kernel functions in the reproducing kernel Sobolev spaces. AIMS Mathematics, 2020, 5(1): 482-496. doi: 10.3934/math.2020032


  • 1. E. F. Gregory, Y. Qi, Reproducing kernels of Sobolev spaces via a green kernel approach with differential operators and boundary operators, Adv. Comput. Math., 38 (2013), 891-921.    
  • 2. M. G. Sakar, Iterative reproducing kernel Hilbert spaces method for Riccati differential equations, J. Comput. Appl. Math., 309 (2017), 163-174.    
  • 3. M. Cui, Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science Publishers Inc, New York, 2009.
  • 4. S. Zaremba, Sur le calcul numérique des fonctions demandées dan le probléme de dirichlet et le probleme hydrodynamique, Bulletin International l'Académia des Sciences de Cracovie, 68 (1908), 125-195.
  • 5. S. Bergman, The Kernel Function and Conformal Mapping, American Mathematical Society, New York, 1950.
  • 6. M. Zorzi, A. Chiuso, The harmonic analysis of kernel functions, Automatica, 94 (2018), 125-137.    
  • 7. M. Zorzi, A. Chiuso, Sparse plus low rank network identification: A nonparametric approach, Automatica, 76 (2017), 355-366.    
  • 8. M. Zorzi, Empirical Bayesian learning in AR graphical models, Automatica, 109 (2019), 108516.
  • 9. E. Novak, Reproducing Kernels of Sobolev Spaces on Rd and Applications to Embedding Constants and Tractability, Arxiv.
  • 10. O. A. Arqub, Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions, Comput. Math. Appl., 73 (2017), 1243-1261.    
  • 11. S. Momani, O. A. Arqub, T. Hayat, et al. A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type, Appl. Math. Comput., 240 (2014), 229-239.
  • 12. B. Azarnavid, K. Parand, An iterative reproducing kernel method in Hilbert space for the multipoint boundary value problems, J. Comput. Appl. Math., 328 (2018), 151-163.    
  • 13. A. Akgül, New reproducing kernel functions, Math. Probl. Eng., 2015 (2015), 1-10.
  • 14. A. Akgül, On solutions of variable-order fractional differential equations, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 7 (2017), 112-116.
  • 15. A. Akgül, E. K. Akgül, D. Baleanu, Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique, Adv. Differ. Equ., 2015 (2015), 220.


This article has been cited by

  • 1. Xiuying Li, Yang Gao, Boying Wu, Approximate solutions of Atangana-Baleanu variable order fractional problems, AIMS Mathematics, 2020, 5, 3, 2285, 10.3934/math.2020151
  • 2. F. Z. Geng, Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems, AIMS Mathematics, 2020, 5, 6, 6020, 10.3934/math.2020385

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved