Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel

1 Department of Mathematics, Science Faculty, Firat University, 23119 Elazig, Turkey
2 Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, Ankara, Turkey
3 Institute of Space Sciences, Magurele-Bucharest, Romania

Special Issues: Recent Advances in Fractional Calculus with Real World Applications

In this manuscript the fractional form of wind-influenced projectile motion equations which have a significant place in physics is extensively investigated by preserving dimensionality of the physical quantities for fractional operators and features of wind-influenced projectile motion are computed analytically in view of Atangana-Baleanu (ABC) fractional derivative in Caputo sense. Moreover, ABC fractional derivative with (n + α)th-order and its Laplace transform (LT) are obtained, α ∈ [0, 1] and n ∈ N. A comparative analysis based on the classical case is carried out in order to shed more light on the potent of the ABC fractional operator. Hence we present the results for some values of α, k friction constant, different wind effects and different masses in 3D illustrations by comparing Caputo fractional operator. Thus, we can observe trajectory, time of flight, maximum height and range clearly. Moreover, the obtained results are shown to correspond to the classical case while the order α → 1.
  Figure/Table
  Supplementary
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved